




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
毕业设计(论文外文参考文献及译文中文题目模块化安全铁路信号计算机联锁系统学院自动化与电气工程学院专业自动控制姓名葛彦宁学号08746指导教师贺清5月30日Component-basedSafetyComputerofRailwaySignalInterlockingSystem1IntroductionSignalInterlockingSystemisthecriticalequipmentwhichcanguaranteetrafficsafetyandenhanceoperationalefficiencyinrailwaytransportation.Foralongtime,thecorecontrolcomputeradoptsininterlockingsystemisthespecialcustomizedhigh-gradesafetycomputer,forexample,theSIMISofSiemens,theEI32ofNipponSignal,andsoon.Alongwiththerapiddevelopmentofelectronictechnology,thecustomizedsafetycomputerisfacingseverechallenges,forinstance,thehighdevelopmentcosts,poorusability,weakexpansibilityandslowtechnologyupdate.Toovercometheflawsofthehigh-gradespecialcustomizedcomputer,theU.S.DepartmentofDefensehasputforwardtheconcept:weshouldadoptcommercialstandardstoreplacemilitarynormsandstandardsformeetingconsumers’demand[1].Inthemeantime,thereareseveralexplorationsandpracticesaboutadoptingopensystemarchitectureinavionics.TheUnitedStatedandEuropehavedomuchresearchaboututilizingcost-effectivefault-tolerantcomputertoreplacethededicatedcomputerinaerospaceandothersafety-criticalfields.Inrecentyears,itisgraduallybecominganewtrendthattheutilizationofstandardizedcomponentsinaerospace,industry,transportationandothersafety-criticalfields.2Railwayssignalinterlockingsystem2.1FunctionsofsignalinterlockingsystemThebasicfunctionofsignalinterlockingsystemistoprotecttrainsafetybycontrollingsignalequipments,suchasswitchpoints,signalsandtrackunitsinastation,andithandlesroutesviaacertaininterlockingregulation.Sincethebirthoftherailwaytransportation,signalinterlockingsystemhasgonethroughmanualsignal,mechanicalsignal,relay-basedinterlocking,andthemoderncomputer-basedInterlockingSystem.2.2ArchitectureofsignalinterlockingsystemGenerally,theInterlockingSystemhasahierarchicalstructure.Accordingtothefunctionofequipments,thesystemcanbedividedtothefunctionofequipments;thesystemcanbedividedintothreelayersasshowninfigure1.Figure1ArchitectureofSignalInterlockingSystem3Component-basedsafetycomputerdesign3.1DesignstrategyThedesignconceptofcomponent-basedsafetycriticalcomputerisdifferentfromthatofspecialcustomizedcomputer.OurdesignstrategyofSICisonabaseoffault-toleranceandsystemintegration.WeseparatetheSICintothreelayers,thestandardizedcomponentunitlayer,safetysoftwarelayerandthesystemlayer.Differentsafetyfunctionsareallocatedforeachlayer,andthefinalintegrationofthethreelayersensuresthepredefinedsafetyintegritylevelofthewholeSIC.Thethreelayerscanbedescribedasfollows:(1ComponentunitlayerincludesfourindependentstandardizedCPUmodules.Ahardware“SAFETYAND”logicisimplementedinthisyear.(2Safetysoftwarelayermainlyutilizesfail-safestrategyandfault-tolerantmanagement.TheinterlockingsafetycomputingofthewholesystemadoptstwooutputsfromdifferentCPU,itcanmostlyensurethediversityofsoftwaretoholdwithdesignerrorsofsignalversionandremovehiddenrisks.(3Systemlayeraimstoimprovereliability,availabilityandmaintainabilitybymeansofredundancy.3.2Designofhardwarefault-tolerantstructureAsshowninfigure2,theSICoffourindependentcomponentunits(C11,C12,C21,C22.Thefault-tolerantarchitectureadoptsdual2vote2(2v2×2structure,andakindofhigh-performancestandardizedmodulehasbeenselectedascomputingunitwhichadoptsIntelXScalekernel,533MHZ.TheoperationofSICisbasedonadualtwo-layerdatabuses.ThehighbusadoptsthestandardEthernetandTCP/IPcommunicationprotocol,andthelowbusisControllerAreaNetwork(CAN.C11、C12andC21、C22respectivelymakeupoftwosafetycomputingcomponentsIC1andIC2,whichareof2v2structure.Andeachcomponenthasanexternaldynamiccircuitwatchdogthatissetforcomputingsupervisionandswitching.Figure2HardwarestructureofSIC3.3StandardizedcomponentunitAftercomponentmoduleismadecertain,accordingtothesafety-criticalrequirementsofrailwaysignalinterlockingsystem,wehavetodoasecondarydevelopmentonthemodule.Thedesignincludespowersupply,interfacesandotherembeddedcircuits.Thefault-tolerantprocessing,synchronizedcomputing,andfaultdiagnosisofSICmostlydependonthesafetysoftware.Herethesafetysoftwaredesignmethodisdifferingfromthatofthespecialcomputertoo.Fordedicatedcomputer,thesoftwareisoftenspeciallydesignedbasedonthebarehardware.Asrestrictedbycomputingabilityandapplicationobject,aspecialschedulingprogramiscommonlydesignedassafetysoftwareforthecomputer,andnotauniversaloperatingsystem.Thefault-tolerantprocessingandfaultdiagnosisofthededicatedcomputeraretightlyhardware-coupled.However,thesafetysoftwareforSICisexotericandlooselyhardware-coupled,anditisbasedonastandardLinuxOS.Thesafetysoftwareisvitalelementofsecondarydevelopment.ItincludesLinuxOSadjustment,fail-safeprocess,fault-tolerancemanagement,andsafetyinterlockinglogic.ThehierarchyrelationsbetweenthemareshowninFigure4.SafetyInterlockLogicFail-safeprocessFault-tolerancemanagementLinuxOSadjustmentFigure4SafetysoftwarehierarchyofSIC3.4Fault-tolerantmodelandsafetycomputation3.4.1Fault-tolerantmodelTheFault-tolerantcomputationofSICisofamultilevelmodel:SIC=F1002D(F(Sc11,Sc12,F(Sc21,Sc22Firstly,basiccomputingunitCi1adoptsonealgorithmtocompletetheSCi1,andCi2finishestheSCi2viaadifferentalgorithm,secondly2outof2(2oo2safetycomputingcomponentofSICexecutes2oo2calculationandgetsFSICifromthecalculationresultsofSCi1SCi2,andthirdly,accordingthestatesofwatchdogandswitchunitblock,theresultofSICisgottenviaa1outof2withdiagnostics(1oo2Dcalculation,whichisbasedonFSIC1andFSIC2.Theflowofcalculationsisasfollows:(1Sci1=Fci1(Dnet1,Dnet2,Ddi,Dfss(2Sci2=Fci2(Dnet1,Dnet2,Ddi,Dfss(3FSICi=F2oo2(Sci1,Sci2,(i=1,2(4SIC_OutPut=F1oo2D(FSIC1,FSIC23.4.2SafetycomputationAsinterlockingsystemconsistsofafixedsetoftask,thecomputationalmodelofSICistask-based.Ingeneral,applicationsmayconformtoatime-triggered,event-triggeredormixedcomputationalmodel.Herethetime-triggeredmodeisselected,tasksareexecutedcyclically.TheconsistencyofcomputingstatesbetweenthetwounitsisthefoundationofSICforensuringsafetyandcredibility.AsSICworksunderalooselycoupledmode,itisdifferentfromthatofdedicatedhardware-coupledcomputer.SoaspecializedsynchronizationalgorithmisnecessaryforSIC.SICcanbeconsideredasamultiprocessordistributedsystem,anditscomputationalmodelisessentiallybasedondatacomparingviahighbuscommunication.First,ananalyticalapproachisusedtoconfirmtheworst-caseresponsetimeofeachtask.Toguaranteethedeadlineoftasksthatcommunicateacrossthenetwork,theaccesstimeanddelayofcommunicationmediumissettoafixedpossiblevalue.Moreover,thecomputationalmodelmustmeetstherealtimerequirementsofrailwayinterlockingsystem,withinthesystemcomputingcycle,wesetmanycheckpointsPi(i=1,2,...n,whicharesmallenoughforsynchronization,andcomputationresultvotingisexecutedateachpoint.ThesafetycomputationflowofSICisshowninFigure5.Start0clockclockSafetyfunctionsTasksofinterlockinglogici:p:checkpointInitializeSynchronizationGuaranteeSynchronousTimetriggerFigure5SafetycomputationalmodelofSIC4.Hardwaresafetyintegritylevelevaluation4.1SafetyIntegrityAsanauthoritativeinternationalstandardforsafety-relatedsystem,IEC61508presentsadefinitionofsafetyintegrity:probabilityofasafety-relatedsystemsatisfactorilyperformingtherequiredsafetyfunctionsunderallthestatedconditionswithinastatedperiodoftime.InIEC61508,therearefourlevelsofsafetyintegrityareprescribe,SIL1~SIL4.TheSIL1isthelowest,andSIL4highest.AccordingtoIEC61508,theSICbelongstosafety-relatedsystemsinhighdemandorcontinuousmodeofoperation.TheSILofSICcanbeevaluatedviatheprobabilityofdangerousperhour.TheprovisionofSILaboutsuchsysteminIEC61508,seetable1.Table1-SafetyIntegritylevels:targetfailuremeasuresforasafetyfunctionoperatinginhighdemandorcontinuousmodeofoperationSafetyIntegritylevelHighdemandorcontinuousmodeofOperation(ProbabilityofadangerousFailureperhour4≥10-9to<10-83≥10-8to<10-72≥10-7to<10-61≥10-6to<10-54.2ReliabilityblockdiagramofSICAfteranalyzingthestructureandworkingprincipleoftheSIC,wegetthebockdiagramofreliability,asfigure6.Figure6BlockdiagramofSICreliability5.ConclusionsInthispaper,weproposedanavailablestandardizedcomponent-basedcomputerSIC.Railwaysignalinterlockingisafail-safesystemwitharequiredprobabilityoflessthan10-9safetycriticalfailuresperhour.Inordertomeetthecriticalconstraints,fault-tolerantarchitectureandsafetytacticsareusedinSIC.Althoughthecomputationalmodelandimplementationtechniquesarerathercomplex,thephilosophyofSICprovidesacheerfulprospecttosafetycriticalapplications,itrendersinasimplerstyleofhardware,furthermore,itcanshortendevelopmentcycleandreducecost.SIChasbeenputintopracticalapplication,andhighperformanceofreliabilityandsafetyhasbeenproven.………………………From:模块化安全铁路信号计算机联锁系统1概述信号联锁系统是确保交通安全、提高铁路运输效率的核心设备。长久以来,在联锁系统中采用的核心控制计算机是特定的高档安全计算机,例如,西门子的SIMIS、日本信号的EI32等。随着电子技术的飞速发展,定制的安全计算机面临着严重的挑战,例如:高的开发成本、可用性差、弱可扩展性、和缓慢的技术更新。为了克服高档特定计算机的缺点,美国国防部提出:我们应当采用商业原则,来取代军事准则和满足客户需要的原则。与此同时,有许多有关在电子设备中采用开放式系统构造的探索与实践。美国和欧洲已经做了诸多有关运用运用划算的容错计算机来替代专用电脑在航天和其它安全核心领域。近年来,在航空航天、工业、交通和其它安全核心领域,运用原则化部件正逐步成为一种新的趋势。2铁路信号联锁系统2.1信号联锁系统的功效信号联锁系统的基本功效是通过控制信号设备,保护列车运行安全。如控制道岔的转换、信号的开放和控制列车通过车站,它通过一种联锁解决规则控制线路。自铁路运输诞生以来、信号联锁系统已经经历了手动信号、机械信号、继电器联锁和当代计算机联锁系统。2.2信号联锁系统的构架普通来说,联锁系统含有层次构造。根据设备的功效,系统可分为三层,如图2.1所示。图2.1信号联锁系统的构造3安全计算机的组件设计3.1设计方略模块化安全核心计算机组件的设计理念不同于那些特殊定制的计算机。我们对安全联锁计算机的设计理念是基于系统的容错性和系统的综合需求。将其分为三层:原则化构成单元层、软件安全层与系统层,并给每一层分派不同的安全功效,最后将三层集成,并确保系统达成预定的安全完整性水平。三层能够描述以下:(1原则化构成单元层涉及四个独立的原则化CPU模块。这一层实现硬件“安全”逻辑联锁。(2软件安全层重要用故障-安用方略和容错算法。由于一种完整的安全联锁系统采用两个不同的CPU输出的成果,因此最能确保软件设计某一版本,在设计时存在的多个错误,去除潜在的风险。(3系统层,旨在提高系统的可用性和冗余系统的可维护性。3.2容错构造的硬件设计如图3.1,安全联锁计算机由四个独立单元构成(C11,C12,C21,C22。采用双容错构造设计(2×2取2构造,计算单元选用高可靠性、高效率的模块,采用了英特尔XScale内核,533兆赫的解决器。安全联锁计算机的操作基于两层数据总线上。高速总线采用原则以太网构造和TCP/IP通信合同、低总线控制器局域网(CAN。C11、C12和C21、C22分别构成两个独立的安全计算部件IC1和IC2,并构成2乘2取2构造,并且每一部分都有计算机监控和外部开关电路动态监测。图3.1SIC硬件构造3.3原则化构成单元在研究清晰构成模块后,根据铁路信号联锁系统的临界安全性规定,我们必须做一个二次开发的模块。该设计重要涉及电源、接口和其它嵌入式电路。安全联锁计算机的容错计算、解决、故障的同时诊疗重要依靠安全软件。这个安全软件的设计办法不同于其它专用的特殊计算机。在专用特殊计算机中,软件普通基于单一裸露硬件而特别设计,限于计算解决能力和软件兼容性,在电脑上特殊的调度程序一般基于安全性软件设计,而不是一种普通的操作系统。专用计算机中容错解决系统和故障诊疗系统通过硬件耦合。然而,安全联锁计算机中的安全软件是开放、宽松的,它基于原则的Linux操作系统。安全软件的二次开发是至关重要的。它涉及Linux系统调节,故障-安全导向、容错性管理,安全联锁的逻辑。它们之间的层次关系如图3.3。兰州交通大学毕业设计(译文)图3.3SIC的安全软件层次关系3.4容错模型和安全预计算3.4.1容错模型安全联锁计算机的多层容错计算模型:SIC=F1oo2D(F2oo2(SC11,SC12,F2oo2(SC21,SC22首先,根据计算单元Ci1采用一种算法来完毕Sci1,计算单元通过不同的算法完Ci2成Sci2,另首先,安全联锁计算机实施二乘二取二算法计算得到的成果和Sci1、Sci2计算,输出到FSICi中的成果,再进行二乘二取二运算,第三,根据监视系统和开关单元块,安全联锁计算机运算的成果在基于FSIC1和FSIC2输出的成果上,通过与门的诊疗解决(2取1),就计算出Sci1。同样的,根据Ci2的计算成果通过不同的算法也完毕Sci2。计算流程以下:(1Sci1=Fci1(Dnet1,Dnet2,Ddi,Dfss;(2Sci2=Fci2(Dnet1,Dnet2,Ddi,Dfss;(3FSIC1=F2oo2(Sci1,Sci2,(i=1,2;(4SICOutPut=Floo2D(FSIC1,FSIC2。3.4.2安全性计算由于联锁系统由一组固定的任务构成,故SIC的计算模型是基于任务的。普通,应用
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 局域网安装合同协议书
- 【公开课】二项分布与超几何分布课件-高二下学期数学人教A版(2019)选择性必修第三册
- 单位合伙合同协议书模板
- 玻璃钢填料项目可行性研究报告
- 无违约金合同协议书
- 租地羊圈转让合同协议书
- 水库工人合同协议书范本
- 装修墙砖合同协议书
- 2025年桐城市徽丰装饰材料厂(企业信用报告)
- 健身俱乐部智能管理项目计划书
- 全国各地大气压一览表
- 2025年执业医师定期考核题库及参考答案
- 日间手术流程规范
- 2024年09月2024秋季中国工商银行湖南分行校园招聘620人笔试历年参考题库附带答案详解
- 《冬病夏治》课件
- 系统维护岗位职责
- 《攀岩基础常识》课件
- (新版)妊娠期恶心呕吐及妊娠剧吐管理指南解读
- 《金属非金属露天矿山及尾矿库重大事故隐患判定标准解读》知识培训
- 《城市道路清扫保洁与质量评价标准》
- 天津市河西区下学期2025届高考数学押题试卷含解析
评论
0/150
提交评论