2024届安徽省无为县数学八上期末预测试题含解析_第1页
2024届安徽省无为县数学八上期末预测试题含解析_第2页
2024届安徽省无为县数学八上期末预测试题含解析_第3页
2024届安徽省无为县数学八上期末预测试题含解析_第4页
2024届安徽省无为县数学八上期末预测试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届安徽省无为县数学八上期末预测试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.下列关于一次函数:的说法错误的是()A.它的图象与坐标轴围成的三角形面积是B.点在这个函数的图象上C.它的函数值随的增大而减小D.它的图象经过第一、二、三象限2.在中,,用尺规作图的方法在上确定一点,使,根据作图痕迹判断,符合要求的是()A. B.C. D.3.下列说法正确的是()A.一个命题一定有逆命题 B.一个定理一定有逆定理C.真命题的逆命题一定是真命题 D.假命题的逆命题一定是假命题4.如图,△ABC中,∠A=40°,AB=AC,D、E、F分别是AB、BC、AC边上的点,且BD=CE,BE=CF,则∠DEF的度数是()A.75° B.70° C.65° D.60°5.如图,四边形ABCD中,对角线AC,BD相交于点O,下列条件不能判定这个四边形是平行四边形的是()A., B.,C., D.,6.如图,OP平分∠BOA,PC⊥OA,PD⊥OB,垂足分别是C、D,则下列结论中错误的是()A.PC=PD B.OC=OD C.OC=OP D.∠CPO=∠DPO7.点M(3,-4)关于y轴的对称点的坐标是()A.(3,4) B.(-3,4) C.(-3,-4) D.(-4,3)8.学校为了了解八年级学生参加课外活动兴趣小组的情况,随机抽查了40名学生(每人只能参加一个兴趣小组),将调查结果列出如下统计表,则八年级学生参加书法兴趣小组的频率是()组别书法绘画舞蹈其它人数812119A.0.1 B.0.15 C.0.2 D.0.39.下列各式从左到右的变形中,是因式分解的是()A.3x+2x﹣1=5x﹣1 B.(3a+2b)(3a﹣2b)=9a2﹣4b2C.x2+x=x2(1+) D.2x2﹣8y2=2(x+2y)(x﹣2y)10.如图,将一张含有角的三角形纸片的两个顶点放在直尺的两条对边上,若,则的度数是()A. B. C. D.11.若一个正n边形的每个内角为156°,则这个正n边形的边数是()A.13 B.14 C.15 D.1612.如图,AB∥CD,AD和BC相交于点O,∠A=20°,∠COD=100°,则∠C的度数是()A.80° B.70° C.60° D.50°二、填空题(每题4分,共24分)13.已知有理数,我们把称为的差倒数,如2的差倒数为,-1的差倒数,已知,是的差倒数,是的差倒数,是的差倒数…,依此类推,则______.14.在实数范围内分解因式:_______________________.15.如图,已知中,,是高和的交点,,则线段的长度为_____.16.如图,平面直角坐标系中的两个点,过C作轴于B,过B作交y轴于D,且,分别平分,,则的度数为______________________.17.若关于x,y的二元一次方程组的解也是二元一次方程x+y=36的解,则k的值为_____.18.等腰三角形一腰上的高与另一腰的夹角为36°,则该等腰三角形的底角的度数为.三、解答题(共78分)19.(8分)如图,已知和均是等边三角形,点在上,且.求的度数.20.(8分)如图,已知等腰三角形中,,,点是内一点,且,点是外一点,满足,且平分,求的度数21.(8分)如图,点D是△ABC的BC边上的一点,且∠1=∠2,∠3=∠4,∠BAC=66°,求∠DAC的度数.22.(10分)如图,△ABC是等边三角形,△ACE是等腰三角形,∠AEC=120°,AE=CE,F为BC中点,连接AE.(1)直接写出∠BAE的度数为;(2)判断AF与CE的位置关系,并说明理由.23.(10分)一个正方形的边长增加,它的面积增加了,求原来这个正方形的边长.24.(10分)甲、乙两人在笔直的湖边公路上同起点、同终点、同方向匀速步行2400米,先到终点的人原地休息.已知甲先出发4分钟,在整个步行过程中,甲、乙两人间的距离y(米)与甲出发的时间x(分)之间的关系如图中折线OA-AB-BC-CD所示.(1)求线段AB的表达式,并写出自变量x的取值范围;(2)求乙的步行速度;(3)求乙比甲早几分钟到达终点?25.(12分)李明和王军相约周末去野生动物园游玩。根据他们的谈话内容,求李明乘公交、王军骑自行车每小时各行多少公里?26.一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,慢车的速度是快车速度的,两车同时出发.设慢车行驶的时间为x(h),两车之间的距离为y(km),图中的折线表示y与x之间的函数关系.根据图象解决以下问题:(1)甲、乙两地之间的距离为km;D点的坐标为;(2)求线段BC的函数关系式,并写出自变量x的取值范围;(3)若第二列快车从乙地出发驶往甲地,速度与第一列快车相同.在第一列快车与慢车相遇30分钟后,第二列快车追上慢车.求第二列快车比第一列快车晚出发多少小时?

参考答案一、选择题(每题4分,共48分)1、D【分析】求出一次函数的图象与x轴、y轴的交点坐标,再利用三角形的面积公式可求出与坐标轴围成的三角形面积,可判断A;将点P(3,1)代入表达式即可判断B;根据x的系数可判断函数值随的变化情况,可判断C;再结合常数项可判断D.【题目详解】解:令x=0,则y=2,令y=0,则x=6,∴图象与坐标轴围成的三角形面积是,故选项A正确;令x=3,代入,则y=1,∴点P(3,1)在函数图象上,故选项B正确;∵<0,∴一次函数的函数值随的增大而减小,故选项C正确;∵<0,2>0,∴它的图象经过第一、二、四象限,故选项D错误.故选D.【题目点拨】本题考查了一次函数图象上点的坐标特征、一次函数的性质以及三角形的面积,逐一分析四个选项的正误是解题的关键.2、D【分析】根据,可得AD=BD,进而即可得到答案.【题目详解】∵,又∵,∴AD=BD,∴点D是线段AB的垂直平分线与BC的交点,故选D.【题目点拨】本题主要考查尺规作垂直平分线以及垂直平分线的性质定理,掌握尺规作垂直平分线是解题的关键.3、A【分析】命题由题设和结论两部分组成,所以所有的命题都有逆命题,但是所有的定理不一定有逆定理,真命题的逆命题不一定是真命题,假命题的逆命题不一定是假命题.【题目详解】解:A、每个命题都有逆命题,故本选项正确.B、每个定理不一定都有逆定理,故本选项错误.C、真命题的逆命题不一定是真命题,故本选项错误.D、假命题的逆命题不一定是假命题,故本选项错误.故选A.【题目点拨】本题考查命题的概念,以及逆命题,逆定理的概念和真假命题的概念等.4、B【分析】由等腰三角形的性质得出∠B=∠C=70°,再证明△BDE≌△CEF,得出∠BDE=∠CEF,运用三角形的外角性质得出∠CEF+∠DEF=∠B+∠BDE,即可得出∠DEF=∠B=70°.【题目详解】解:∵AB=AC,

∴∠B=∠C=(180°-∠A)=70°,

在△BDE和△CEF中,,

∴△BDE≌△CEF(SAS),

∴∠BDE=∠CEF,

∵∠CED=∠B+∠BDE,

即∠CEF+∠DEF=∠B+∠BDE,

∴∠DEF=∠B=70°;

故选:B.【题目点拨】本题考查了等腰三角形的性质、全等三角形的判定与性质以及三角形的外角性质;熟练掌握等腰三角形的性质,证明三角形全等得出对应角相等是解决问题的关键.5、D【分析】分别利用平行四边形的判定方法判断得出即可.【题目详解】A、∵AB∥CD,∴∠DAB+∠ADC=180°,而,∴∠ADC+∠BCD=180°,∴AD∥BC,∴四边形ABCD是平行四边形,故此选项不合题意;B、∵AB=DC,AD=BC,∴四边形ABCD是平行四边形,故此选项不合题意;C、∵AO=CO,BO=DO,∴四边形ABCD是平行四边形,故此选项不合题意;D、AB=DC,AD∥BC无法得出四边形ABCD是平行四边形,故此选项符合题意;故选:D.【题目点拨】此题主要考查了平行四边形的判定,正确把握判定方法是解题关键.6、C【分析】已知OP平分∠BOA,PC⊥OA,PD⊥OB,根据角平分线的性质定理可得PC=PD,在Rt△ODP和Rt△OCP中,利用HL定理判定Rt△ODP≌Rt△OCP,根据全等三角形的性质可得OC=OD,∠CPO=∠DPO,由此即可得结论.【题目详解】∵OP平分∠BOA,PC⊥OA,PD⊥OB,∴PC=PD(选项A正确),在Rt△ODP和Rt△OCP中,∴Rt△ODP≌Rt△OCP,∴OC=OD,∠CPO=∠DPO(选项B、D正确),只有选项C无法证明其正确.故选C.【题目点拨】本题考查了角平分线的性质定理及全等三角形的判定与性质,证明Rt△ODP≌Rt△OCP是解决本题的关键.7、C【分析】根据关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变,即点P(x,y)关于y轴的对称点P′的坐标是(−x,y).【题目详解】∵点M(3,−4),∴关于y轴的对称点的坐标是(−3,−4).故选:C.【题目点拨】此题主要考查了关于x轴、y轴对称点的坐标特点,熟练掌握关于坐标轴对称的特点是解题关键.8、C【分析】根据频率=频数数据总和即可得出答案.【题目详解】解:40人中参加书法兴趣小组的频数是8,

频率是8÷40=0.2,可以用此频率去估计八年级学生参加舒服兴趣小组的频率.

故选:C.【题目点拨】本题是对频率、频数灵活运用的综合考查.注意:每个小组的频数等于数据总数减去其余小组的频数,即各小组频数之和等于数据总和,频率=频数数据总和.9、D【解题分析】A.没把一个多项式转化成几个整式积的形式,故A错误;B.是整式的乘法,故B错误;C.没把一个多项式转化成几个整式积的形式,故C错误;D.把一个多项式转化成几个整式积的形式,故D正确;故选D.10、C【分析】利用平行线的性质,三角形的外角的性质解决问题即可;【题目详解】解:如图,∵AB∥CD,∴∠3=∠2,∴∠3=∠1+30°,∵∠1=20°,∴∠3=∠2=50°;故选:C.【题目点拨】本题主要考查平行线的性质,三角形的外角等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.11、C【解题分析】试题分析:由一个正多边形的每个内角都为156°,可求得其外角的度数,继而可求得此多边形的边数,则可求得答案.解:∵一个正多边形的每个内角都为156°,∴这个正多边形的每个外角都为:180°﹣156°=24°,∴这个多边形的边数为:360°÷24°=15,故选C.考点:多边形内角与外角.12、C【解题分析】试题分析:根据平行线性质求出∠D,根据三角形的内角和定理得出∠C=180°﹣∠D﹣∠COD,代入求出即可.解:∵AB∥CD,∴∠D=∠A=20°,∵∠COD=100°,∴∠C=180°﹣∠D﹣∠COD=60°,故选C.考点:平行线的性质;三角形内角和定理.二、填空题(每题4分,共24分)13、【分析】根据差倒数的定义分别求出前几个数便不难发现,每3个数为一个循环组依次循环,用2020除以3,根据余数的情况确定出与相同的数即可得解.【题目详解】解:∵,

∴,,,……

∴这个数列以,,2依次循环,且,

∵,

∴,

故答案为:.【题目点拨】本题是对数字变化规律的考查,理解差倒数的定义并求出每3个数为一个循环组依次循环是解题的关键.14、【分析】先解方程0,然后把已知的多项式写成的形式即可.【题目详解】解:解方程0,得,∴.故答案为:.【题目点拨】本题考查了利用解一元二次方程分解因式,掌握解答的方法是解题的关键.15、1【分析】根据和得出为等腰直角三角形,从而有,通过等量代换得出,然后利用ASA可证,则有.【题目详解】为等腰直角三角形在和中,故答案为:1.【题目点拨】本题主要考查等腰直角三角形的性质,全等三角形的判定及性质,掌握全等三角形的判定方法及性质是解题的关键.16、45°【分析】连接AD,根据角平分线的定义得到AE,DE分别平分∠CAB,∠ODB,得到∠EAO+∠EDO=45°,根据三角形内角和定理计算即可.【题目详解】连接AD,如图所示:

∵BD∥AC,

∴∠BAC=∠ABD,

∵∠ABD+∠ODB=90°,

∴∠BAC+∠ODB=90°,

∵AE,DE分别平分∠CAB,∠ODB,

∴,

∴,

∵∠AED+∠EAD+∠EDA=180°,即∠AED+∠EAO+∠OAD+∠EDO+∠ODA=180°,

∵∠OAD+∠ODA=90°,

∴∠AED+45°+90°=180°,

∴∠AED=45°.故答案为:45°.【题目点拨】本题考查平行线的性质,坐标与图形,三角形内角和定理,直角三角形两锐角互余等.熟练掌握相关定理,能得出角度之间的关系是解题关键.17、1【分析】先用含k的式子表示x、y,根据方程组的解也是二元一次方程x+y=36的解,即可求得k的值.【题目详解】解:解方程组得,,因为方程组的解也是二元一次方程x+y=36的解,所以3k=36,解得k=1.故答案为1.【题目点拨】本题考查二元一次方程与方程组的解的意义,深刻理解定义是解答关键.18、63°或27°.【解题分析】试题分析:等腰三角形分锐角和钝角两种情况,求出每种情况的顶角的度数,再利用等边对等角的性质(两底角相等)和三角形的内角和定理,即可求出底角的度数:有两种情况;(1)如图当△ABC是锐角三角形时,BD⊥AC于D,则∠ADB=90°,∵∠ABD=36°,∴∠A=90°-36°=54°.∵AB=AC,∴∠ABC=∠C=×(180°-54°)=63°.(2)如图当△EFG是钝角三角形时,FH⊥EG于H,则∠FHE=90°,∵∠HFE=36°,∴∠HEF=90°-36°=54°,∴∠FEG=180°-54°=126°.∵EF=EG,∴∠EFG=∠G=×(180°-126°),=27°.考点:1.等腰三角形的性质;2.三角形内角和定理;分类思想的应用.三、解答题(共78分)19、【分析】根据等边三角形的性质可证明△ABD≌△ACE,根据全等三角形的性质得到BD=CE,∠ACE=∠B=60°,进而得到DC=CE,∠DCE=120°,根据等腰三角形的性质以及三角形内角和定理即可得出结论.【题目详解】∵与均是等边三角形,∴,,,∴,∴,∴,,∴,,∴.【题目点拨】本题考查了等边三角形的性质以及等腰三角形的判定.证明三角形△ABD≌△ACE是解答本题的关键.20、28°.【分析】连接EC,根据题目已知条件可证的△ACE≌△BCE,故得到∠BCE=∠ACE,再证△BDE≌△BCE,可得到∠ECB=∠EDB,利用条件得到∠ACB=56°,从而得到∠BDE的度数.【题目详解】解:连接EC,如图所示∵在△ACE和△BCE中∴△ACE≌△BCE∴∠BCE=∠ACE∵BE平分∠DBC∴∠DBE=∠EBC∵CA=CB,BD=AC∴CB=DB在△BDE和△BCE中∴△BDE≌△BCE∴∠ECB=∠EDB∵∠BAC=62°,AC=BC∴∠ACB=180°-62°×2=56°∴∠BCE=∠ACE=∠EDB=56°÷2=28°∴∠EDB=28°【题目点拨】本题主要考查的是全等三角形的判定以及全等三角形的性质,正确的运用全等三角形的判定方法和性质是解题的关键.21、28°【解题分析】根据三角形的外角和内角和性质计算即可得出答案.【题目详解】解:由图和题意可知:∠BAC=180°-∠2-∠3又∠3=∠4=∠1+∠2,∴66°=180°-∠2-(∠1+∠2)∵∠1=∠2∴66°=180°-3∠1,即∠1=38°∴∠DAC=∠BAC-∠1=66°-38°=28°【题目点拨】本题考查的是三角形,外角定理是三角形中求角度的常用定理,需要熟练掌握.22、(1)90°;(2)AF∥EC,见解析【分析】(1)分别利用等边三角形的性质和等腰三角形的性质求出∠BAC,∠CAE的度数,然后利用∠BAE=∠BAC+∠CAE即可解决问题;(2)根据等边三角形的性质有AF⊥BC,然后利用等边三角形的性质和等腰三角形的性质得出,∠BCE=90°则有EC⊥BC,再根据垂直于同一条直线的两直线平行即可得出结论.【题目详解】解:(1)∵△ABC是等边三角形,∴∠BAC=∠ACB=60°,∵EA=EC,∠AEC=120°,∴EAC=∠ECA=30°,∴∠BAE=∠BAC+∠CAE=90°.故答案为90°.(2)结论:AF∥EC.理由:∵AB=AC,BF=CF,∴AF⊥BC,∵∠ACB=60°,∠ACE=30°,∴∠BCE=90°,∴EC⊥BC,∴AF∥EC.【题目点拨】本题主要考查等边三角形和等腰三角形的性质,平行线的判定,三角形内角和定理,掌握等边三角形和等腰三角形的性质,平行线的判定,三角形内角和定理是解题的关键.23、6cm【分析】设原来正方形的边长为acm,根据题意列出方程解答即可.【题目详解】解:设原来正方形的边长为acm,则现在边长为(a+3)cm,根据题意可得:,解得:∴原来这个正方形的边长为6cm.【题目点拨】本题考查了方程的应用,解题的关键是正确设出未知数,列出方程.24、(1);(2)80米/分;(3)6分钟【分析】(1)根据图示,设线段AB的表达式为:y=kx+b,把把(4,240),(16,0)代入得到关于k,b的二元一次方程组,解之,即可得到答案,

(2)根据线段OA,求出甲的速度,根据图示可知:乙在点B处追上甲,根据速度=路程÷时间,计算求值即可,

(3)根据图示,求出二者相遇时与出发点的距离,进而求出与终点的距离,结合(2)的结果,分别计算出相遇后,到达终点甲和乙所用的时间,二者的时间差即可所求答案.【题目详解】(1)根据题意得:

设线段AB的表达式为:y=kx+b(4≤x≤16),

把(4,240),(16,0)代入得:,

解得:,

即线段AB的表达式为:y=-20x+320(4≤x≤16),

(2)又线段OA可知:甲的速度为:=60(米/分),

乙的步行速度为:=80(米/分),

答:乙的步行速度为80米/分,

(3)在B处甲乙相遇时,与出发点的距离为:240+(16-4)×60=960(米),

与终点的距离为:2400-960=1440(米),

相遇后,到达终点甲所用的时间为:=24(分),

相遇后,到达终点乙所用的时间为:=18(分),

24-18=6(分),

答:乙比甲早6分钟到达终点.【题目点拨】本题考查了一次函数的应用,正确掌握分析函数图象是解题的关键.25、李明乘公交、王军骑自行车的速度分别为20km/h、60km/h.【分析】根据“路程÷速度=时间”这一等量关系,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论