![江苏省南京市六合区2024届数学八上期末综合测试试题含解析_第1页](http://file4.renrendoc.com/view/206b3c760ce91cfb34ca0eef88851d23/206b3c760ce91cfb34ca0eef88851d231.gif)
![江苏省南京市六合区2024届数学八上期末综合测试试题含解析_第2页](http://file4.renrendoc.com/view/206b3c760ce91cfb34ca0eef88851d23/206b3c760ce91cfb34ca0eef88851d232.gif)
![江苏省南京市六合区2024届数学八上期末综合测试试题含解析_第3页](http://file4.renrendoc.com/view/206b3c760ce91cfb34ca0eef88851d23/206b3c760ce91cfb34ca0eef88851d233.gif)
![江苏省南京市六合区2024届数学八上期末综合测试试题含解析_第4页](http://file4.renrendoc.com/view/206b3c760ce91cfb34ca0eef88851d23/206b3c760ce91cfb34ca0eef88851d234.gif)
![江苏省南京市六合区2024届数学八上期末综合测试试题含解析_第5页](http://file4.renrendoc.com/view/206b3c760ce91cfb34ca0eef88851d23/206b3c760ce91cfb34ca0eef88851d235.gif)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江苏省南京市六合区2024届数学八上期末综合测试试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.下列命题是真命题的是()A.三角形的三条高线相交于三角形内一点B.等腰三角形的中线与高线重合C.三边长为的三角形为直角三角形D.到线段两端距离相等的点在这条线段的垂直平分线上2.如图,EB交AC于点M,交FC于点D,AB交FC于点N,∠E=∠F=90°,∠B=∠C,AE=AF,给出下列结论:其中正确的结论有()①∠1=∠2;②BE=CF;③△ACN≌△ABM;④CD=DN;⑤△AFN≌△AEM.A.2个 B.3个 C.4个 D.5个3.下列计算正确的是()A. B. C. D.4.已知y=m+3xm2−8是正比例函数,则A.8 B.4 C.±3 D.35.下列条件中,能确定三角形的形状和大小的是()A.AB=4,BC=5,CA=10 B.AB=5,BC=4,∠A=40°C.∠A=90°,AB=8 D.∠A=60°,∠B=50°,AB=56.一个圆柱形容器的容积为V,开始用一根小水管向容器内注水,水面高度达到容器高度一半后,改用一根口径为小水管2倍的大水管注水,向容器中注满水的全过程共用时间t分钟.设小水管的注水速度为x立方米/分钟,则下列方程正确的是()A. B.C. D.7.如图,在3×3的正方形网格中由四个格点A,B,C,D,以其中一点为原点,网格线所在直线为坐标轴,建立平面直角坐标系,使其余三个点中存在两个点关于一条坐标轴对称,则原点是()A.A点 B.B点 C.C点 D.D点8.下列三角形中:①有两个角等于60°的三角形;②有一个角等于60°的等腰三角形;③三个角都相等的三角形;④三边都相等的三角形.其中是等边三角形的有()A.①②③ B.①②④ C.①③④ D.①②③④9.若分式的值为,则的值为A. B. C. D.10.若是三角形的三边长,则式子的值(
).A.小于0 B.等于0 C.大于0 D.不能确定二、填空题(每小题3分,共24分)11.要使分式有意义,则x的取值范围是_______.12.已知等腰三角形的一个内角为70°,则它的顶角度数为_____.13.如图,圆柱形容器中,高为1m,底面周长为4m,在容器内壁离容器底部0.4m处的点B处有一蚊子.此时,一只壁虎正好在容器外壁,离容器上沿0.6m与蚊子相对的点A处,则壁虎捕捉蚊子的最短距离为______m(容器厚度忽略不计).14.如图,已知雷达探测器在一次探测中发现了两个目标A,B,其中A的位置可以表示成(60°,6),那么B可以表示为____________,A与B的距离为____________15.下表记录了甲、乙、丙、丁四名跳远运动员选拔赛成绩的平均数与方差:甲乙丙丁平均数方差根据表中数据,要从甲、乙、丙、丁中选择一名成绩好又发挥稳定的运动员参加决赛,应该选择__________.16.的立方根是___________17.因式分解:______________.18.在学习平方根的过程中,同学们总结出:在中,已知底数和指数,求幂的运算是乘方运算:已知幂和指数,求底数的运算是开方运算.小明提出一个问题:“如果已知底数和幕,求指数是否也对应着一种运算呢?”老师首先肯定了小明善于思考,继而告诉大家这是同学们进入高中将继续学习的对数,感兴趣的同学可以课下自主探究.小明课后借助网络查到了对数的定义:小明根据对数的定义,尝试进行了下列探究:∵,∴;∵,∴;∵,∴;∵,∴;计算:________.三、解答题(共66分)19.(10分)直角坐标系中,A,B,P的位置如图所示,按要求完成下列各题:(1)将线段AB向左平移5个单位,再向下平移1个单位,画出平移后的线段A1B1;(2)将线段AB绕点P顺时针旋转90°,画出旋转后的线段A2B2;(1)作出线段AB关于点P成中心对称的线段A1B1.20.(6分)从地到地全程千米,前一路段为国道,其余路段为高速公路.已知汽车在国道上行驶的速度为,在高速公路上行驶的速度为,一辆客车从地开往地一共行驶了.求、两地间国道和高速公路各多少千米.(列方程组,解应用题)21.(6分)解方程:22.(8分)△ABC在平面直角坐标系中的位置如图所示,A,B,C三点在格点上.(1)在图中作出△ABC关于y轴对称的△A1B1C1.(2)求△A1B1C1的面积.23.(8分)已知:如图,在△ABC中,AD⊥BC,垂足是D,E是线段AD上的点,且AD=BD,DE=DC.⑴求证:∠BED=∠C;⑵若AC=13,DC=5,求AE的长.24.(8分)如图,AD是△ABC的中线,AB=AC=13,BC=10,求AD长.25.(10分)如图,在Rt△ABC中,∠ACB=90°,∠A=40°,△ABC的外角∠CBD的平分线BE交AC的延长线于点E.(1)求∠CBE的度数;(2)过点D作DF∥BE,交AC的延长线于点F,求∠F的度数.26.(10分)在等腰Rt△ABC中,AB=AC,∠BAC=90°(1)如图1,D,E是等腰Rt△ABC斜边BC上两动点,且∠DAE=45°,将△ABE绕点A逆时针旋转90后,得到△AFC,连接DF①求证:△AED≌△AFD;②当BE=3,CE=7时,求DE的长;(2)如图2,点D是等腰Rt△ABC斜边BC所在直线上的一动点,连接AD,以点A为直角顶点作等腰Rt△ADE,当BD=3,BC=9时,求DE的长.
参考答案一、选择题(每小题3分,共30分)1、D【分析】利用直角三角形三条高线相交于直角顶点可对A进行判断;根据等腰三角形三线合一可对B进行判断;根据勾股定理的逆定理可对C进行判断;根据线段垂直平分线定理的逆定理可对D进行判断.【题目详解】解:A、锐角三角形的三条高线相交于三角形内一点,直角三角形三条高线相交于直角顶点,所以A选项错误;B、等腰三角形的底边上的中线与与底边上的高重合,所以B选项错误;C、因为,所以三边长为,,不为为直角三角形,所以B选项错误;D、到线段两端距离相等的点在这条线段的垂直平分线上,所以D选项正确.故选:D.【题目点拨】本题考查了命题与定理:要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.2、C【分析】①正确.可以证明△ABE≌△ACF可得结论.②正确,利用全等三角形的性质可得结论.③正确,根据ASA证明三角形全等即可.④错误,本结论无法证明.⑤正确.根据ASA证明三角形全等即可.【题目详解】∵∠E=∠F=90°,∠B=∠C,AE=AF,∴△ABE≌△ACF(AAS),∴BE=CF,AF=AE,故②正确,∠BAE=∠CAF,∠BAE−∠BAC=∠CAF−∠BAC,∴∠1=∠2,故①正确,∵△ABE≌△ACF,∴AB=AC,又∠BAC=∠CAB,∠B=∠C△ACN≌△ABM(ASA),故③正确,CD=DN不能证明成立,故④错误∵∠1=∠2,∠F=∠E,AF=AE,∴△AFN≌△AEM(ASA),故⑤正确,故选:C.【题目点拨】本题考查三角形全等的判定方法和三角形全等的性质,解题的关键是正确寻找全等三角形全等的条件,属于中考常考题型.3、D【分析】根据合并同类项、同底数幂的乘除运算可进行排除选项.【题目详解】A、,故错误;B、,故错误;C、,故错误;D、,故正确;故选D.【题目点拨】本题主要考查合并同类项及同底数幂的乘除运算,熟练掌握合并同类项及同底数幂的乘除运算是解题的关键.4、D【解题分析】直接利用正比例函数的定义分析得出即可.【题目详解】∵y=(m+2)xm2﹣8是正比例函数,∴m2﹣8=2且m+2≠0,解得m=2.故选:D.【题目点拨】考查了正比例函数的定义,解题关键是掌握正比例函数的定义条件:正比例函数y=kx的定义条件是:k为常数且k≠0,自变量次数为2.5、D【分析】由已知两角夹一边的大小,,符合三角形全等的判定条件可以,可作出形状和大小唯一确定的三角形,即可三角形的大小和形状.【题目详解】解:A、由于AB=4,BC=5,CA=10,所以AB+BC<10,三角形不存在,故本选项错误;
B、若已知AB、BC与∠B的大小,则根据SAS可判定其形状和大小,故本选项错误;C、有一个角的大小,和一边的长,故其形状也不确定,故本选项错误.D、∠A=60°,∠B=50°,AB=5,有两个角的大小和夹边的长,所以根据ASA可确定三角形的大小和形状,故本选项正确.故选:D.【题目点拨】本题主要考查了三角形的一些基础知识问题,应熟练掌握.6、C【分析】根据题意先求出注入前一半容积水量所需的时间为,再求出后一半容积注水的时间为,故可列出方程.【题目详解】根据题意得出前一半容积水量所需的时间为,后一半容积注水的时间为,即可列出方程为,故选C.【题目点拨】此题主要考查分式方程的应用,解题的关键是找到等量关系进行列方程.7、B【解题分析】试题解析:当以点B为原点时,A(-1,-1),C(1,-1),则点A和点C关于y轴对称,符合条件,故选B.【题目点拨】本题考查的是关于x轴、y轴对称的点的坐标和坐标确定位置,掌握平面直角坐标系内点的坐标的确定方法和对称的性质是解题的关键.8、D【分析】根据等边三角形的判定判断.【题目详解】两个角为60°,则第三个角也是60°,则其是等边三角形,故正确;②这是等边三角形的判定2,故正确;③三角形内角和为180°,三个角都相等,即三个角的度数都为60°,则其是等边三角形,故正确;④这是等边三角形定义,故正确.【题目点拨】本题考查的知识点是等边三角形的判定,解题关键是熟记等边三角形性质和定义进行解答.9、A【分析】根据分式值为0,分子为0,分母不为0,得出x+3=0,解方程即可得出答案.【题目详解】因为分式的值为,所以x+3=0,所以x=-3.故选A.【题目点拨】考查了分式值为零的条件,关键是掌握分式值为零的条件是分子等于零且分母不等于零.注:“分母不为零”这个条件不能少.10、A【分析】先利用平方差公式进行因式分解,再利用三角形三边关系定理进行判断即可得解.【题目详解】解:=(a-b+c)(a-b-c)根据三角形两边之和大于第三边,两边之差小于第三边,(a-c+b)(a-c-b)<0故选A.【题目点拨】本题考查了多项式因式分解的应用,三角形三边关系的应用,熟练掌握三角形三条边的关系是解答本题的关键.二、填空题(每小题3分,共24分)11、x≠1【分析】分式有意义的条件:分母不等于零,依此列不等式解答.【题目详解】∵分式有意义,∴,解得x≠1故答案为:x≠1.【题目点拨】此题考查分式有意义的条件,正确掌握分式有意义的条件列不等式是解题的关键.12、70°或40°.【分析】已知等腰三角形的一个内角为70°,根据等腰三角形的性质可分情况解答:当70°是顶角或者70°是底角两种情况.【题目详解】此题要分情况考虑:①70°是它的顶角;②70°是它的底角,则顶角是180°−70°×2=40°.故答案为70°或40°.【题目点拨】本题考查等腰三角形的性质,三角形内角和定理.掌握分类讨论思想是解决此题的关键.13、【分析】将容器侧面展开,建立A关于EC的对称点A′,根据两点之间线段最短可知A′B的长度即为所求.【题目详解】如图,将容器侧面展开,作A关于EC的对称点A′,连接A′B交EC于F,则A′B即为最短距离.
∵高为1m,底面周长为4m,在容器内壁离容器底部0.4m的点B处有一蚊子,此时一只壁虎正好在容器外壁,离容器上沿0.6m与蚊子相对的点A处,
∴A′D==2(m),BD=1+0.6-0.4=1.2(m),
∴在直角△A′DB中,A′B=(m),故答案是:.【题目点拨】本题考查了平面展开-最短路径问题,将图形展开,利用轴对称的性质和勾股定理进行计算是解题的关键.同时也考查了同学们的创造性思维能力.14、【分析】按已知可得,表示一个点,距离是自内向外的环数,角度是所在列的度数,据此进行判断即可得解.【题目详解】∵(a,b)中,b表示目标与探测器的距离;a表示以正东为始边,逆时针旋转后的角度,∴B可以表示为.∵A、B与雷达中心的连线间的夹角为150°-60°=90°,∴AB==故填:(1).(2)..【题目点拨】本题考查了坐标确定位置,解题时由已知条件正确确定A、B的位置及勾股定理的应用是解决本题的关键.15、丙【解题分析】由表中数据可知,丙的平均成绩和甲的平均成绩最高,而丙的方差也是最小的,成绩最稳定,所以应该选择:丙.故答案为丙.16、【解题分析】依据立方根的性质求解即可.解:∵(-)3=-,∴-的立方根是-.故答案为-17、;【分析】先提公因式,然后利用完全平方公式进行分解因式,即可得到答案.【题目详解】解:==;故答案为:.【题目点拨】本题考查了提公因式法和公式法分解因式,解题的关键是熟练掌握分解因式的方法和步骤.18、6【分析】根据已知条件中给出的对数与乘方之间的关系求解可得;【题目详解】解:∵,∴;故答案为:6【题目点拨】本题主要考查数字的变化规律,解题的关键是弄清对数与乘方之间的关系,并熟练运用.三、解答题(共66分)19、(1)见解析;(2)见解析;(1)见解析【分析】(1)根据平移的性质作出A,B的对应点A1,B1,连接即可;(2)根据旋转的性质作出A,B的对应点A2,B2,连接即可;(1)根据中心对称的性质作出A,B的对应点A1,B1,连接即可.【题目详解】解:(1)如图,线段A1B1即为所求;(2)如图,线段A2B2即为所求;(1)如图,线段A1B1即为所求.【题目点拨】本题考查作图−旋转变换,平移变换以及中心对称等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.20、、两地国道为90千米,高速公路为200千米.【分析】首先设A、B两地间国道和高速公路分别是x、y千米,根据题意可得等量关系:国道路程+高速路程=290,在国道上行驶的时间+在高速公路上行驶的时间=1.5,根据等量关系列出方程组,再解即可.【题目详解】解:设、两地国道为千米,高速公路为千米.则方程组为:,解得:,答:A、B两地间国道和高速公路分别是90、200千米.【题目点拨】此题考查了二元一次方程组的应用,关键是设出未知数,表示出每段行驶所花费的时间,得出方程组,难度一般.21、x=【分析】先两边同时乘以去分母,将分式方程转化为一元一次方程,求解并检验即可.【题目详解】解:去分母得,,去括号整理得,,即,解得,检验:当时,,∴原方程的解为.【题目点拨】本题考查解分式方程,掌握分式方程的求解方法是解题的关键,注意一定要验根.22、(1)见解析;(2)6.2【分析】(1)作出△ABC各个顶点关于y轴对称的对应点,顺次连接起来,即可;(2)利用△A1B1C1所在矩形面积减去周围三角形面积进而得出答案.【题目详解】(1)如图所示:△A1B1C1,即为所求;(2)△A1B1C1的面积为:3×2﹣×1×2﹣×2×3﹣×2×3=6.2.【题目点拨】本题主要考查图形的轴对称变换,掌握轴对称变换的定义以及割补法求面积,是解题的关键.23、1【分析】(1)可以通过证明△ADC≌△BDE可得∠BED=∠C;(2)先根据勾股定理求出AD,由上一问△ADC≌△BDE可得ED=EC,AD=BD,即可求出AE.【题目详解】证明:(1)∵AD⊥BC,∴∠BDE=∠ADC=90°,∵在△ADC和△BDE中,,∴△ADC≌△BDE,∴∠BED=∠C.(2)∵∠ADC=90°,AC=13,DC=5,∴AD=12∵△BDE≌△ADC,DE=DC=5∴AE=AD-DE=12-5=1.【题目点拨】题目中出现较多的角相等,边相等可以考虑用三角形全等的方法解决问题.24、1【分析】利用勾股定理和等腰三角形的性质求得AD的长度即可.【题目详解】解:∵AB=AC=13,BC=10,AD是中线,∴AD⊥BC,BD=5,∴∠ADB=90°,∴AD2=AB2﹣BD2=144,∴AD=1.【题目点拨】本题考查的知识点是等腰三角形的性质以及勾股定理,利用等腰三角形的性质求出BD的长是解此题的关键.25、(1)65°;(2)25°.【题目详解】分析:(1)先根据直角三角形两锐角互余求出∠ABC=90°﹣∠A=50°,由邻补角定义得出∠CBD=130°.再根据角平分线定义即可求出∠CBE=∠CBD=65°;(2)先根据直角三角形两锐角互余的性质得出∠CEB=90°﹣65°=25°,再根据平行线的性质即可求出∠F=∠CEB=25°.详解:(1)∵在Rt△ABC中,∠ACB=90°,∠A=40°,∴∠ABC=90°﹣∠A=50°,∴∠CBD=130°.∵BE是∠CBD的平分线,∴∠CBE=∠CBD=65°;(2)∵∠ACB=90°,∠CBE=65°,∴∠CEB=90°﹣65°=25°.∵DF∥BE,∴∠F=∠CEB=25°.点睛:本题考查了三角形内角和定理,直角三角形两锐角互余的性质,平行线的性质,邻补角定义,角平分线定义.掌握各定义与性质是解题的关键.26、(1)①见解析;②DE=;(2)DE的值为3或3【分析】(1)①先证明∠DAE=∠DAF,结合DA=DA,AE=AF,即可证明;②如图1中,设DE=x,则CD=7﹣x.在Rt△DCF中,由DF
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 舞台设备运输外包合同范本
- 2025年度办公室租赁及企业市场推广服务合同
- 2025年度互联网公司办公室租赁简明合同
- 工程建筑工程技术员聘用合同
- 劳务合作合同年
- 农业产业链质量监督与管理指南
- 打井降水施工合同
- 食品进口与出口检验作业指导书
- 深圳股权转让合同协议书
- 建设工程施工劳务分包合同协议书
- 2025年大庆职业学院高职单招语文2018-2024历年参考题库频考点含答案解析
- 山东省济南市2024-2024学年高三上学期1月期末考试 地理 含答案
- 【课件】液体的压强(课件)-2024-2025学年人教版物理八年级下册
- 实施弹性退休制度暂行办法解读课件
- 发酵馒头课件教学课件
- 《心系国防 强国有我》 课件-2024-2025学年高一上学期开学第一课国防教育主题班会
- 幼小衔接拼音试卷-带彩图-幼小衔接拼音试卷图片-幼小拼音试卷习题
- 数与代数结构图
- 曹晶《孙悟空大闹蟠桃会》教学设计
- 国际贸易进出口流程图
- 玄武岩纤维复合筋工程案例及反馈情况
评论
0/150
提交评论