2024届四川省广元市旺苍县数学八上期末复习检测试题含解析_第1页
2024届四川省广元市旺苍县数学八上期末复习检测试题含解析_第2页
2024届四川省广元市旺苍县数学八上期末复习检测试题含解析_第3页
2024届四川省广元市旺苍县数学八上期末复习检测试题含解析_第4页
2024届四川省广元市旺苍县数学八上期末复习检测试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届四川省广元市旺苍县数学八上期末复习检测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每题4分,共48分)1.点P(x,y)是平面直角坐标系内的一个点,且它的横、纵坐标是二元一次方程组的解(a为任意实数),则当a变化时,点P一定不会经过()A.第一象限 B.第二象限 C.第三象限 D.第四象限2.下列运算正确的是()A. B. C. D.3.分式有意义的条件是()A.x≠0 B.y≠0 C.x≠3 D.x≠﹣34.某同学不小心把一块三角形的玻璃打碎成了3块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事方法是带③去,依据是()A.SSS B.SAS C.AAS D.ASA5.如果m是任意实数,则点一定不在A.第一象限 B.第二象限 C.第三象限 D.第四象限6.直线与直线在同一平面直角坐标系中的图象如图所示,则关于x的不等式的解为()A.x>-1 B.x<-1 C.x<-2 D.无法确定7.如图,在△ABC中,∠C=90°,∠B=30°,以A为圆心,任意长为半径画弧分别交AB、AC于点M和N,再分别以M、N为圆心,大于MN的长为半径画弧,两弧交于点P,连接AP,并廷长交BC于点D,则下列说法中正确的个数是()①AD是∠BAC的平分线②∠ADC=60°③点D在AB的垂直平分线上④若AD=2dm,则点D到AB的距离是1dm⑤S△DAC:S△DAB=1:2A.2 B.3 C.4 D.58.点P(3,)关于x轴对称的点的坐标是()A.(3,) B.(,) C.(3,4) D.(,4)9.等边,,于点、是的中点,点在线段上运动,则的最小值是()A.6 B. C. D.310.计算的结果是()A. B. C. D.11.人体中红细胞的直径约为0.0000077m,将数0.0000077用科学记数法表示为()A.7.7× B. C. D.12.不等式组的解集是x>1,则m的取值范围是()A.m≥1 B.m≤1 C.m≥0 D.m≤0二、填空题(每题4分,共24分)13.如图所示,AD是△ABC的中线,点E是AD的中点,连接BE、CE,若△ABC的面积为8,则阴影部分的面积为_____.14.已知一个正多边形的内角和为1080°,则它的一个外角的度数为_______度.15.关于一次函数有如下说法:①当时,随的增大而减小;②当时,函数图象经过一、二、三象限;③函数图象一定经过点;④将直线向下移动个单位长度后所得直线表达式为.其中说法正确的序号是__________.16.已知直线y=kx+b,若k+b=-7,kb=12,那么该直线不经过第____象限;17.当x_____时,分式有意义.18.如图,在中,平分于点,如果,那么等于_____________.三、解答题(共78分)19.(8分)如图所示,在△ABC中,D是BC边上一点∠1=∠2,∠3=∠4,∠BAC=69°,求∠DAC的度数.20.(8分)如图,一条直线分别与直线、直线、直线、直线相交于点,且,.求证:.21.(8分)先化简再求值,其中x=-1.22.(10分)如图,AC=BC,AE⊥CD于点A,BD⊥CE于点B.(1)求证:CD=CE;(2)若点A为CD的中点,求∠C的度数.23.(10分)阅读下面的材料:我们可以用配方法求一个二次三项式的最大值或最小值,例如:求代数式的最小值.方法如下:∵,由,得;∴代数式的最小值是4.(1)仿照上述方法求代数式的最小值.(2)代数式有最大值还是最小值?请用配方法求出这个最值.24.(10分)如图,已知在平面直角坐标系中,△ABC三个顶点的坐标分别是A(1,1),B(4,2),C(3,4).(1)画出△ABC关于y轴对称的△A1B1C1(要求:A与A1,B与B1,C与C1相对应);(2)通过画图,在x轴上确定点Q,使得QA与QB之和最小,画出QA与QB,并直接写出点Q的坐标.点Q的坐标为.25.(12分)先化简,再求值:26.观察下列等式:①;②;③……根据上述规律解决下列问题:(1)完成第四个等式:;(2)猜想第个等式(用含的式子表示),并证明其正确性.

参考答案一、选择题(每题4分,共48分)1、C【分析】首先用消元法消去a,得到y与x的函数关系式,然后根据一次函数的图象及性质即可得出结论.【题目详解】解:用②×2+①,得∴∵∴过一、二、四象限,不过第三象限∴点P一定不会经过第三象限,

故选:C.【题目点拨】本题考查了一次函数与二元一次方程的知识,解题的关键是首先消去a,求出y与x的函数关系式.2、C【分析】根据合并同类项法则、同底数幂乘除法法则和幂的乘方法则逐项判断即可.【题目详解】解:A.,故错误;B.,故错误;C.,正确,D.,故错误;故选C.【题目点拨】本题考查了合并同类项,同底数幂乘除法以及幂的乘方,熟练掌握运算法则是解题关键.3、C【分析】根据分式的分母不为0可得关于x的不等式,解不等式即得答案.【题目详解】解:要使分式有意义,则,解得:x≠1.故选:C.【题目点拨】本题考查了分式有意义的条件,属于应知应会题型,熟知分式的分母不为0是解题的关键.4、D【分析】根据全等三角形的判定方法即可进行判断.【题目详解】解:③保留了原三角形的两角和它们的夹边,根据三角形全等的判定方法ASA可配一块完全一样的玻璃,而①仅保留了一个角和部分边,②仅保留了部分边,均不能配一块与原来完全一样的玻璃.故选D.【题目点拨】本题考查的是全等三角形的判定,难度不大,掌握三角形全等的判定方法是解题的关键.5、D【分析】求出点P的纵坐标一定大于横坐标,然后根据各象限的点的坐标特征解答.【题目详解】∵,∴点P的纵坐标一定大于横坐标..∵第四象限的点的横坐标是正数,纵坐标是负数,∴第四象限的点的横坐标一定大于纵坐标.∴点P一定不在第四象限.故选D.6、B【分析】如图,直线l1:y1=k1x+b与直线l2:y2=k2x在同一平面直角坐标系中的图像如图所示,则求关于x的不等式k1x+b>k2x的解集就是求:能使函数y1=k1x+b的图象在函数y2=k2x的上方的自变量的取值范围.【题目详解】解:能使函数y1=k1x+b的图象在函数y2=k2x的上方的自变量的取值范围是x<-1.故关于x的不等式k1x+b>k2x的解集为:x<-1.故选B.7、D【分析】①根据作图的过程可以判定AD是∠BAC的角平分线;

②利用角平分线的定义可以推知∠CAD=30°,则由直角三角形的性质来求∠ADC的度数;

③利用等角对等边可以证得△ADB的等腰三角形,由等腰三角形的“三线合一”的性质可以证明点D在AB的中垂线上;

④作DH⊥AB于H,由∠1=∠2,DC⊥AC,DH⊥AB,推出DC=DH即可解决问题;

⑤利用30度角所对的直角边是斜边的一半、三角形的面积计算公式来求两个三角形的面积之比.【题目详解】解:①根据作图的过程可知,AD是∠BAC的平分线,故①正确;②如图,∵在△ABC中,∠C=90°,∠B=30°,∴∠CAB=60°.又∵AD是∠BAC的平分线,∴∠1=∠2=∠CAB=30°,∴∠3=90°﹣∠2=60°,即∠ADC=60°.故②正确;③∵∠1=∠B=30°,∴AD=BD,∴点D在AB的中垂线上.故③正确;④作DH⊥AB于H,∵∠1=∠2,DC⊥AC,DH⊥AB,∴DC=DH,在Rt△ACD中,CD=AD=1dm,∴点D到AB的距离是1dm;故④正确,⑤在Rt△ACB中,∵∠B=30°,∴AB=2AC,∴S△DAC:S△DAB=AC•CD:•AB•DH=1:2;故⑤正确.综上所述,正确的结论是:①②③④⑤,共有5个.故选:D.【题目点拨】本题考查了角平分线的性质、线段垂直平分线的性质以及作图-基本作图.解题时,需要熟悉等腰三角形的判定与性质.8、C【分析】根据点坐标关于x轴对称的变换规律即可得.【题目详解】点坐标关于x轴对称的变换规律:横坐标相同,纵坐标互为相反数,,点P关于x轴对称的点的坐标是,故选:C.【题目点拨】本题考查了点坐标与轴对称变化,熟练掌握点坐标关于x轴对称的变换规律是解题关键.9、B【分析】如图,作点E关于直线AD的对称点E′,连接CE′交AD于F′.由EF+FC=FE′+FC,所以当C、E′、F共线时,EF+CF最小,由△ABC是等边三角形,AB=BC=AC=6,AE=AE′=3,推出AE′=E′B,解直角三角形即可得到结论.【题目详解】解:如图,作点关于直线的对称点,连接交于.∵,∴当、、共线时,最小值,∵是等边三角形,,,∴,,∴,,∴.故选:B.【题目点拨】本题考查轴对称、等边三角形的性质、垂线段最短等知识,解题的关键是灵活运用所学知识解决最值问题.10、A【解题分析】根据同底数幂的乘法公式进行计算即可得解.【题目详解】根据同底数幂的乘法公式(m,n都是正整数)可知,故选:A.【题目点拨】本题主要考查了整式的乘法,熟练掌握同底数幂的乘法公式是解决本题的关键.11、C【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【题目详解】0.0000077=7.7×10﹣6,故答案选C.12、D【分析】表示出不等式组中两不等式的解集,根据已知不等式组的解集确定出m的范围即可.【题目详解】解:不等式整理得:,由不等式组的解集为x>1,得到m+1≤1,解得:m≤0.故选D.【题目点拨】本题考查了不等式组的解集的确定.二、填空题(每题4分,共24分)13、1.【分析】根据三角形的中线将三角形分成面积相等的两部分的知识进行解答即可.【题目详解】∵AD是△ABC的中线,∴S△ABD=S△ACDS△ABC=1,∵点E是AD的中点,∴S△ABE=S△ABD=2,S△CED=S△ADC=2,∴阴影部分的面积=S△ABE+S△CED=1,故答案为:1.【题目点拨】此题考查三角形中线的性质,三角形的面积,解题关键在于利用面积等量替换解答.14、45【分析】利用n边形内角和公式求出n的值,再结合多边形的外角和度数为即可求出一个外角的度数.【题目详解】解:设这个正多边形为正n边形,根据题意可得解得所以该正多边形的一个外角的度数为45度.故答案为:45.【题目点拨】本题考查了多边形内角和与外角和,灵活利用多边形的内角和与外角和公式是解题的关键.15、②【分析】根据一次函数的图象与性质一一判断选择即可.【题目详解】解:①当时,随的增大而增大,故错误;②当时,函数图象经过一、二、三象限,正确;③将点代入解析式可得,不成立,函数图象不经过点,故错误;④将直线向下移动个单位长度后所得直线表达式为,故错误.故答案为:②.【题目点拨】本题考查了一次函数的图象与性质,熟练掌握该知识点是解答关键.16、一【分析】根据k+b=-7,kb=12,判断k及b的符号即可得到答案.【题目详解】∵kb=12,∴k、b同号,∵k+b=-7,∴k、b都是负数,∴直线y=kx+b经过二、三、四象限,故答案为:一.【题目点拨】此题考查一次函数的性质,当k一次函数经过一、三象限,当k0时,图象经过二、四象限;当b图象交y轴于正半轴,当b0时,图象交y轴于负半轴.17、≠【分析】分母不为零,分式有意义,根据分母不为1,列式解得x的取值范围.【题目详解】当1-2x≠1,即x≠时,分式有意义.故答案为x≠.【题目点拨】本题主要考查分式有意义的条件:分式有意义,则分母不能为1.18、4.【分析】由角平分线的性质可证明CE=DE,可得AE+DE=AC,再由勾股定理求出AC的长即可.【题目详解】∵平分于点,∴DE=CE,∴AE+DE=AE+EC=AC,在Rt△ABC中,,∴AC=,∴AE+DE=4,故答案为:4.【题目点拨】本题主要考查了角平分线的性质以及勾股定理,熟练掌握蜀道难突然发觉解答此题的关键.三、解答题(共78分)19、32°【分析】设∠1=∠2=x,根据三角形外角的性质可得∠4=∠3=2x,在△ABC中,根据三角形的内角和定理可得方程2x+x+69°=180°,解方程求得x的值,即可求得∠4、∠3的度数,在△ADC中,根据三角形的内角和定理求得∠DAC的度数即可.【题目详解】设∠1=∠2=x∴∠4=∠3=∠1+∠2=2x,在△ABC中,∠4+∠2+∠BAC=180°,∴2x+x+69°=180°解得x=37.即∠1=∠2=37°,∠4=∠3=37°×2=74°.在△ADC中,∠4+∠3+∠DAC=180°∴∠DAC=180º-∠4-∠3=180°-74°-74°=32º.【题目点拨】本题考查了三角形的内角和定理及三角形外角的性质,熟知三角形的内角和定理及三角形外角的性质是解题的关键.20、见解析【分析】由∠1=∠2利用“内错角相等,两直线平行”可得出AE∥DF,再利用“两直线平行,同位角相等”可得出∠AEC=∠D,结合∠A=∠D可得出∠AEC=∠A,利用“内错角相等,两直线平行”可得出AB∥CD,再利用“两直线平行,内错角相等”可证出∠B=∠C.【题目详解】解:证明:∵∠1=∠2,

∴AE∥DF,

∴∠AEC=∠D.

又∵∠A=∠D,

∴∠AEC=∠A,

∴AB∥CD,

∴∠B=∠C.【题目点拨】本题考查了平行线的判定与性质,牢记各平行线的判定定理及性质定理是解题的关键.21、.【解题分析】原式.当时,原式22、(1)见解析;(2)60°【分析】(1)证明△CAE≌△CBD(ASA),可得出结论;(2)根据题意得出△CDE为等边三角形,进而得出∠C的度数.【题目详解】(1)∵AE⊥CD于点A,BD⊥CE于点B,∴∠CAE=∠CBD=90°,在△CAE和△CBD中,,∴△CAE≌△CBD(ASA).∴CD=CE;(2)连接DE,∵由(1)可得CE=CD,∵点A为CD的中点,AE⊥CD,∴CE=DE,∴CE=DE=CD,∴△CDE为等边三角形.∴∠C=60°.【题目点拨】此题主要考查全等三角形的判定的综合问题,解题的关键是熟知全等三角形的判定方法及等边三角形的判定定理.23、(1);(2)有最大值,最大值为32.【分析】(1)仿照阅读材料、利用配方法把原式化为完全平方式与一个数的和的形式,根据偶次方的非负性解答;(2)利用配方法把原式进行变形,根据偶次方的非负性解答即可.【题目详解】解:(1)∵,由,得;∴代数式的最小值是;(2),∵,∴,∴代数式有最大值,最大值为32.【题目点拨】本题考查的是配方法的应用和偶次方的非负性,掌握配方法的一般步骤、偶次方的非负性是解题的关键.24、(1)见解析;(2)见解析,(2,0)【分析】(1)依据轴对称的性质进行作图,即可得到△A1B1C1;(2)作点

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论