7.2.5 数据的内在预测性-神经网络_第1页
7.2.5 数据的内在预测性-神经网络_第2页
7.2.5 数据的内在预测性-神经网络_第3页
7.2.5 数据的内在预测性-神经网络_第4页
7.2.5 数据的内在预测性-神经网络_第5页
已阅读5页,还剩6页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

《大数据导论》神经网络1、什么是神经网络生物神经网络人工神经网络一般指生物的大脑神经元,细胞,触点等组成的网络,用于产生生物的意识,帮助生物进行思考和行动。2、人工神经网络人工神经网络(ArtificialNeuralNetworks,简写为ANNs)也简称为神经网络(NNs)或称作连接模型(ConnectionModel),它是一种模仿动物神经网络行为特征,进行分布式并行信息处理的算法数学模型。这种网络依靠系统的复杂程度,通过调整内部大量节点之间相互连接的关系,从而达到处理信息的目的。3、研究内容生物原型:从生理学、心理学、解剖学、脑科学、病理学等方面研究神经细胞、神经网络、神经系统的生物原型结构及其功能机理。模型研究:根据生物原型的研究,建立神经元、神经网络的理论模型。其中包括概念模型、知识模型、物理化学模型、数学模型等。算法研究:在理论模型研究的基础上构作具体的神经网络模型,以实现计算机模拟或准备制作硬件,包括网络学习算法的研究。这方面的工作也称为技术模型研究。4、应用完成某种信号处理或模式识别的功能构作专家系统手写体识别神经网络图像识别机器视觉语音识别5、经典的神经网络这是一个包含三个层次的神经网络。红色的是输入层,绿色的是输出层,紫色的是中间层(也叫隐藏层)。输入层有3个输入单元,隐藏层有4个单元,输出层有2个单元。对于神经元的研究由来已久,1904年生物学家就已经知晓了神经元的组成结构。一个神经元通常具有多个树突,主要用来接受传入信息;而轴突只有一条,轴突尾端有许多轴突末梢可以给其他多个神经元传递信息。轴突末梢跟其他神经元的树突产生连接,从而传递信号。这个连接的位置在生物学上叫做“突触”。人脑中的神经元形状6、生物神经元

1943年,心理学家McCulloch(麦卡洛克)和数学家Pitts(匹兹)参考了生物神经元的结构,发表了抽象的神经元模型MP。7、人工神经元模型8、连接连接是神经元中最重要的东西。每一个连接上都有一个权重。一个神经网络的训练算法就是让权重的值调整到最佳,以使得整个网络的预测效果最好。我们使用a来表示输入,用w来表示权值。一个表示连接的有向箭头可以这样理解:在初端,传递的信号大小仍然是a,端中间有加权参数w,经过这个加权后的信号会变成a*w,因此在连接的末端,信号的大小就变成了a*w。在其他绘图模型里,有向箭头可能表示的是值的不变传递。而在神经元模型里,每个有向箭头表示的是值的加权传递。9、神经元模型的使用神经元模型的使用可以这样理解:我们有一个数据,称之为样本。样本有四个属性,其中三个属性已知,一个属性未知。我们需要做的就是通过三个已知属性预测未知属性。具体办法就是使用神经元的公式进行计算。三个已知属性的值是a1,a2,a3,未知属性的值是z。z可以通过公式计算出来。这里,已知的属性称之为特征,未知的属性称之为目标。假设特征与目标之间确

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论