版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖南省怀化市2024届高一上数学期末经典试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知角α的终边过点P(4,-3),则sinα+cosα的值是()A B.C. D.2.已知,且,则A. B.C. D.3.设函数,则下列函数中为奇函数的是()A. B.C. D.4.关于,,下列叙述正确的是()A.若,则是的整数倍B.函数的图象关于点对称C.函数的图象关于直线对称D.函数在区间上为增函数.5.已知向量,,,若,,则()A. B.C. D.6.已知集合,为自然数集,则下列结论正确的是()A. B.C. D.7.函数,对任意的非零实数,关于的方程的解集不可能是A B.C. D.8.设,则A. B.C. D.9.一名篮球运动员在最近6场比赛中所得分数的茎叶图如图所示,由于疏忽,茎叶图中的两个数据上出现了污点,导致这两个数字无法辨认,但统计员记得除掉污点2处的数字不影响整体中位数,且这六个数据的平均数为17,则污点1,2处的数字分别为A.5,7 B.5,6C.4,5 D.5,510.已知角α的终边经过点,则等于()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.函数的值域是________12.已知函数是定义在上且以3为周期的奇函数,当时,,则时,__________,函数在区间上的零点个数为__________13.已知函数,,对,用表示,中的较大者,记为,则的最小值为______.14.已知,,则的最小值是___________.15.已知函数,R的图象与轴无公共点,求实数的取值范围是_________.16.过点,的直线的倾斜角为___________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.设函数且是奇函数求常数k值;若,试判断函数的单调性,并加以证明;若已知,且函数在区间上的最小值为,求实数m的值18.某学习小组在暑期社会实践活动中,通过对某商店一种商品销售情况的调查发现:该商品在过去的一个月内(以30天计)的日销售价格(元)与时间(天)的函数关系近似满足(为正常数).该商品的日销售量(个)与时间(天)部分数据如下表所示:(天)10202530(个)110120125120已知第10天该商品的日销售收入为121元.(I)求的值;(II)给出以下二种函数模型:①,②,请你根据上表中的数据,从中选择你认为最合适的一种函数来描述该商品的日销售量与时间的关系,并求出该函数的解析式;(III)求该商品的日销售收入(元)的最小值.(函数,在区间上单调递减,在区间上单调递增.性质直接应用.)19.已知函数是定义在R上的奇函数,其中为指数函数,且的图象过定点(1)求函数的解析式;(2)若关于x的方程,有解,求实数a的取值范围;(3)若对任意的,不等式恒成立,求实数k的取值范围20.(1)已知函数(其中,,)的图象与x轴的交于A,B两点,A,B两点的最小距离为,且该函数的图象上的一个最高点的坐标为.求函数的解析式(2)已知角的终边在直线上,求下列函数的值:21.已知函数的图像如图所示.(1)求函数的解析式;(2)当时,求函数的最大值和最小值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解题分析】由三角函数的定义可求得sinα与cosα,从而可得sinα+cosα的值【题目详解】∵知角α的终边经过点P(4,-3),∴sinα,cosα,∴sinα+cosα故选:A2、A【解题分析】由条件利用两角和的正切公式求得tanα的值,再利用同角三角函数的基本关系与二倍角公式,求得的值【题目详解】解:∵tan(α),则tanα,∵tanα,sin2α+cos2α=1,α∈(,0),可得sinα∴2sinα=2()故选A点睛】本题主要考查两角和的正切公式的应用,同角三角函数的基本关系,二倍角公式,考查计算能力,属于基础题3、A【解题分析】分别求出选项的函数解析式,再利用奇函数的定义即可得选项.【题目详解】由题意可得,对于A,是奇函数,故A正确;对于B,不是奇函数,故B不正确;对于C,,其定义域不关于原点对称,所以不是奇函数,故C不正确;对于D,,其定义域不关于原点对称,不是奇函数,故D不正确.故选:A.4、B【解题分析】由题意利用余弦函数的图象和性质,逐一判断各个结论是否正确,从而得出结论.【题目详解】对于A,的周期为,若,则是的整数倍,故A错误;对于B,当时,,则函数的图象关于点中心对称,B正确;对于C,当时,,不是函数最值,函数的图象不关于直线对称,C错误;对于D,,,则不单调,D错误故选:B.5、C【解题分析】计算出向量的坐标,然后利用共线向量的坐标表示得出关于实数的等式,解出即可.【题目详解】向量,,,又且,,解得.故选:C.【题目点拨】本题考查平面向量的坐标运算,考查共线向量的坐标表示,考查计算能力,属于基础题.6、C【解题分析】由题设可得,结合集合与集合、元素与集合的关系判断各选项的正误即可.【题目详解】由题设,,而为自然数集,则,且,所以,,故A、B、D错误,C正确.故选:C7、D【解题分析】由题意得函数图象的对称轴为设方程的解为,则必有,由图象可得是平行于x轴的直线,它们与函数的图象必有交点,由函数图象的对称性得的两个解要关于直线对称,故可得;同理方程的两个解也要关于直线对称,同理从而可得若关于的方程有一个正根,则方程有两个不同的实数根;若关于的方程有两个正根,则方程有四个不同的实数根综合以上情况可得,关于的方程的解集不可能是.选D非选择题8、B【解题分析】因为,所以.选B9、A【解题分析】由于除掉处的数字后剩余个数据的中位数为,故污点处的数字为,,则污点处的数字为,故选A.10、D【解题分析】由任意角三角函数的定义可得结果.【题目详解】依题意得.故选:D.二、填空题:本大题共6小题,每小题5分,共30分。11、##【解题分析】求出的范围,再根据对数函数的性质即可求该函数值域.【题目详解】,而定义域上递减,,无最小值,函数的值域为故答案为:.12、①.②.5【解题分析】(1)当时,,∴,又函数是奇函数,∴故当时,(2)当时,令,得,即,解得,即,又函数为奇函数,故可得,且∵函数是以3为周期的函数,∴,,又,∴综上可得函数在区间上的零点为,共5个答案:,513、【解题分析】作出函数的图象,结合图象即可得的最小值.【题目详解】如图,在同一直角坐标系中分别作出函数和的图象,因为对,,故函数的图象如图所示:由图可知,当时,函数取得最小值.故答案为:.14、【解题分析】化简函数,由,得到,结合三角函数的性质,即可求解.【题目详解】由题意,函数,因为,可得,当时,即时,函数取得最小值.故答案为:.15、【解题分析】令=t>0,则g(t)=>0对t>0恒成立,即对t>0恒成立,再由基本不等式求出的最大值即可.【题目详解】,R,令=t>0,则f(x)=g(t)=,由题可知g(t)在t>0时与横轴无公共点,则对t>0恒成立,即对t>0恒成立,∵,当且仅当,即时,等号成立,∴,∴.故答案为:.16、##【解题分析】设直线的倾斜角为,求出直线的斜率即得解.【题目详解】解:设直线的倾斜角为,由题得直线的斜率为,因为,所以.故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)在上为单调增函数;(3)【解题分析】(1)根据奇函数的定义,恒成立,可得值,也可用奇函数的必要条件求出值,然后用奇函数定义检验;(2)判断单调性,一般由单调性定义,设,判断的正负(因式分解后判别),可得结论;(3)首先由,得,这样就有,这种函数的最值求法是用换元法,即设,把函数转化为二次函数的问题,注意在换元过程中“新元”的取值范围试题解析:(1)函数的定义域为函数(且)是奇函数,,经检验可知,函数为奇函数,符合题意(2)设、为上两任意实数,且,,,,即函数在上为单调增函数.(3),,解得或且,()令(),则当时,,解得,舍去当时,,解得考点:函数的奇偶性、单调性,函数的最值18、(I)1,(II);(III)121元【解题分析】(I)利用列方程,解方程求得的值.(II)根据题目所给表格的数据,判断出日销售量不单调,由此确定选择模型②.将表格数据代入,待定系数法求得的值,也即求得的解析式.(III)将写成分段函数的形式,由计算出日销售收入的解析式,根据函数的单调性求得的最小值.【题目详解】(I)依题意知第10天该商品的日销售收入为,解得.(II)由题中的数据知,当时间变化时,该商品的日销售量有增有减并不单调,故只能选②.从表中任意取两组值代入可求得(III)由(2)知∴当时,在区间上是单调递减的,在区间上是单调递增,所以当时,取得最小值,且;当时,是单调递减的,所以当时,取得最小值,且.综上所述,当时,取得最小值,且.故该商品的日销售收入的最小值为121元.【题目点拨】本小题主要考查函数模型在实际生活中的运用,考查利用函数的单调性求最值,考查运算求解能力,属于中档题.19、(1)(2)(3)【解题分析】(1)设出的解析式,根据点求得的解析式.根据为奇函数,求得解析式.(2)根据的单调性和值域,求得的取值范围.(3)证得的单调性,结合的奇偶性化简不等式,得到对任意的,,利用二次函数的性质求得的取值范围.【题目详解】(1)设(,且),则,所以(舍去)或,所以,又为奇函数,且定义域为R,所以,即,所以,所以(2)由于为上减函数,由于,所以,所以,所以.(3)设,则因为,所以,所以,所以,即,所以函数在R上单调递减要使对任意的,恒成立,即对任意的,恒成立因为为奇函数,所以恒成立又因函数在R上单调递减,所以对任意的,恒成立,即对任意的,恒成立令,,时,成立;时,所以,,,无解综上,【题目点拨】本小题主要考查指数函数解析式的求法,考查分式型函数值域的求法,考查利用函数的奇偶性和单调性解函数不等式,考查二次函数的性质,考查分类讨论的数学思想方法,综合性较强,属于难题.20、(1);(2)当为第一象限角时:;当为第三象限角时:.【解题分析】(1)由题意得,,进而求得,根据最高点结合可得,进而可求得的解析式;(2)由题意得为第一或第三象限角,分两种情况由同角三角函数关系可解得结果.【题目详解】(1)由题意得,,则,解得.根据最高点得,所以,即,因,所以,取得.所以.(2)由题意得,则为第一或第三象限角.当为第一象限角时:由得,代入得,又,所以,则.所以;当为第三象限角时:同理可得.21、(1);(2)最大值,最小值为-1.【解题分析】(1)由图可知,,可得,再将点代入得,结合,可得的值,即可求出函数的解析式;(2)根据函数的周期,可求时函数的最大值和最小值就是转化为求函数在区间上的最大值和最小值,结合三角函数图象,即可求出函数的最大值和最小值.试题解析:(1)由图可知:,则∴,将点代入得,,∴
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年临时搬运合同
- 2024年度某新能源汽车制造技术许可合同
- 2024年度文化娱乐活动策划合同
- 2024年广播剧配音委托合同
- 2024年建筑工程地面建设合同
- 企业普通员工年终个人工作总结
- 2024年度风力发电设备安装合同
- 节能宣传课件教学课件
- 2024医疗机构人力资源共享与培训合同
- 2024年度碎石料供需合同
- 护士与医生的合作与沟通
- GB 42295-2022电动自行车电气安全要求
- 产品系统设计开发 课件 第4、5章 产品系统设计类型、产品系统设计开发综合案例
- 1编译原理及实现课后题及答案
- 焊接材料的质量控制和追溯规范
- 让阅读成为习惯家长会课件
- 家庭健康照护服务方案
- 施工方案 谁编
- 沪教牛津版八上英语Unit-6-单元完整课件
- 新能源及多能互补互补技术
- 混凝土搅拌站安装及拆除方案
评论
0/150
提交评论