




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届西藏自治区林芝市数学高一上期末考试试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.函数与的图象交于两点,为坐标原点,则的面积为()A. B.C. D.2.一条直线与两条平行线中的一条为异面直线,则它与另一条()A.相交 B.异面C.相交或异面 D.平行3.用斜二测画法画一个水平放置平面图形的直观图为如图所示的直角梯形,其中BC=AB=2,则原平面图形的面积为()A. B.C. D.4.设,则“”是“”的()A.充分而不必要条件 B.必要而不充分条件C.充要条件 D.既不充分也不必要条件5.设集合A={3,4,5},B={3,6},P={x|xA},Q={x|xB},则PQ=A.{3}B.{3,4,5,6}C.{{3}}D.{{3},}6.下列函数中,与函数有相同图象的一个是A. B.C. D.7.已知函数,则函数的零点所在区间为()A.(0,1) B.(1,2)C.(2,3) D.(3,4)8.设是两个不同的平面,是一条直线,以下命题正确的是A.若,则 B.若,则C.若,则 D.若,则9.设,则“”是“”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件10.正四棱锥的顶点都在同一球面上,若该棱锥的高为4,底面边长为2,则该球的表面积为()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知为角终边上一点,且,则______12.已知函数,关于方程有四个不同的实数解,则的取值范围为__________13.设当时,函数取得最大值,则__________.14.函数的单调递增区间为___________.15.设函数,且;(1)若,求的最小值;(2)若在上能成立,求实数的取值范围16.已知幂函数y=xα的图象经过点2,8,那么三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数,函数的最小正周期为,是函数的一条对称轴.(1)求函数的对称中心和单调区间;(2)若,求函数在的最大值和最小值,并写出对应的的值18.如图,函数(,)的图象与y轴交于点,最小正周期是π(1)求函数的解析式;(2)已知点,点P是函数图象上一点,点是线段PA中点,且,求的值19.已知函数(1)若,,求;(2)将函数的图象先向左平移个单位长度,再把所得图象上所有点的横坐标变为原来的,纵坐标不变,得到函数的图象.求函数的单调递增区间20.某企业采用新工艺,把企业生产中排放的二氧化碳转化为一种可利用的化工产品.已知该单位每月的处理量最少为300吨,最多为600吨,月处理成本y(元)与月处理量x(吨)之间的函数关系可近似地表示为y200x+80000,且每处理一吨二氧化碳得到可利用的化工产品价值为100元.(1)该单位每月处理量为多少吨时,才能使每吨的平均处理成本最低?(2)该单位每月能否获利?如果获利,求出最大利润;如果不获利,则国家至少需要补贴多少元才能使该单位不亏损?21.已知全集为实数集R,集合,求,;已知集合,若,求实数a的取值范围
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解题分析】令,解方程可求得,由此可求得两点坐标,得到关于点对称,由可求得结果.【题目详解】令,,解得:或(舍),,或,则或,不妨令,,则关于点对称,.故选:A.2、C【解题分析】如下图所示,三条直线平行,与异面,而与异面,与相交,故选C.3、C【解题分析】先求出直观图中,∠ADC=45°,AB=BC=2,,DC=4,即可得到原图形是一个直角梯形和各个边长及高,直接求面积即可.【题目详解】直观图中,∠ADC=45°,AB=BC=2,DC⊥BC,∴,DC=4,∴原来的平面图形上底长为2,下底为4,高为的直角梯形,∴该平面图形面积为.故选:C4、A【解题分析】解绝对值不等式求解集,根据充分、必要性的定义判断题设条件间的充分、必要关系.【题目详解】由,可得,∴“”是“”的充分而不必要条件.故选:A.5、D【解题分析】集合P={x|x⊆A}表示集合A的子集构成的集合,故P={∅,{3},{4},{5},{3,4},{3,5},{4,5},{3,4,5}},同样Q={∅,{3},{6},{3,6}}.∴P∩Q={{3},Φ};故选D.6、B【解题分析】逐一考查选项中的函数与所给的函数是否为同一个函数即可确定其图象是否相同.【题目详解】逐一考查所给的选项:A.,与题中所给函数的解析式不一致,图象不相同;B.,与题中所给函数的解析式和定义域都一致,图象相同;C.的定义域为,与题中所给函数的定义域不一致,图象不相同;D.的定义域为,与题中所给函数的定义域不一致,图象不相同;故选B.【题目点拨】本题主要考查函数相等的概念,需要同时考查函数的定义域和函数的对应关系,属于中等题.7、B【解题分析】先分析函数的单调性,进而结合零点存在定理,可得函数在区间上有一个零点【题目详解】解:函数在上为增函数,又(1),(2),函数在区间上有一个零点,故选:8、C【解题分析】对于A、B、D均可能出现,而对于C是正确的9、B【解题分析】分别求出两个不等式的的取值范围,根据的取值范围判断充分必要性.【题目详解】等价于,解得:;等价于,解得:,可以推出,而不能推出,所以是的必要不充分条件,所以“”是“”的必要不充分条件故选:B10、A【解题分析】正四棱锥P-ABCD的外接球的球心在它的高上,记为O,PO=AO=R,,=4-R,在Rt△中,,由勾股定理得,∴球的表面积,故选A.考点:球的体积和表面积二、填空题:本大题共6小题,每小题5分,共30分。11、##【解题分析】利用三角函数定义可得:,即可求得:,再利用角的正弦、余弦定义计算得解【题目详解】由三角函数定义可得:,解得:,则,所以,,.故答案为:.12、【解题分析】作出的图象如下:结合图像可知,,故令得:或,令得:,且等号取不到,故,故填.点睛:一般讨论函数零点个数问题,都要转化为方程根的个数问题或两个函数图像交点的个数问题,本题由于涉及函数为初等函数,可以考虑函数图像来解决,转化为过定点的直线与抛物线变形图形的交点问题,对函数图像处理能力要求较高.13、【解题分析】利用辅助角公式化简函数解析式,再根据最值情况可得解.【题目详解】由辅助角公式可知,,,,当,时取最大值,即,,故答案为.14、【解题分析】根据复合函数“同增异减”的原则即可求得答案.【题目详解】由,设,对称轴为:,根据“同增异减”的原则,函数的单调递增区间为:.故答案为:.15、(1)3(2)或【解题分析】(1)由可得,再利用基本不等式中乘“1”法的应用计算可得;(2)将已知转化为不等式有解,再对参数分类讨论,分别计算可得.【小问1详解】函数,由,可得,所以,当时等号成立,又,,,解得时等号成立,所以的最小值是3.【小问2详解】由题知,在上能成立,即能成立,即不等式有解①当时,不等式的解集为,满足题意;②当时,二次函数开口向下,必存在解,满足题意;③当时,需,解得或综上,实数的取值范围是或16、3【解题分析】根据幂函数y=xα的图象经过点2,8,由2【题目详解】因为幂函数y=xα的图象经过点所以2α解得α=3,故答案:3三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)对称中心是,单调递增区间是,单调递减区间是(2)当时,,当时,【解题分析】(1)由函数的最小正周期,求得,再根据当时,函数取到最值求得,根据函数的性质求对称中心和单调区间;(2)写出的解析式,根据定义域,求最值【题目详解】(1),,,所以,,对称中心是,单调递增区间是,单调递减区间是(2),,当时,,当时,【题目点拨】三角函数最值问题要注意整体代换思想的体现,由的取值范围推断的取值范围18、(1);(2),或.【解题分析】(1)根据余弦型函数的最小正周期公式,结合代入法进行求解即可;(2)根据中点坐标公式,结合余弦函数的性质进行求解即可.【小问1详解】因为函数的最小正周期是π,,所以有,即,因为函数的图象与y轴交于点,所以,因为,所以,即;【小问2详解】设,即,因为点是线段PA的中点,所以有,代入,得,因为,所以,因此有,或,解得:,或.19、(1)(2)【解题分析】(1)由平方关系求出,再由求解即可;(2)由伸缩变换和平移变换得出的解析式,再由正弦函数的性质得出函数的单调递增区间【小问1详解】依题意,因为,所以,所以从而【小问2详解】将函数的图象先向左平移个单位长度,得到函数的图象再把所得图象上所有点的横坐标变为原来的,得到函数的图象令,的单调递增区间是所以,,解得,所以函数的单调递增区间为20、(1)400;(2)不能获利,至少需要补贴35000元.【解题分析】(1)每月每吨的平均处理成本为,利用基本不等式求解即得最低成本;(2)写出该单位每月的获利f(x)关于x的函数,整理并利用二次函数的单调性求出最值即可作答.【小问1详解】由题意可知:,每吨二氧化碳的平均处理成本为:,当且仅当,即时,等号成立,∴该单位每月处理量为400吨时,每吨平均处理成本最低;【小问2详解】该单位
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 区域独家经销合同样本
- 小学生漫画课件
- 农用薄膜在不同作物上的应用考核试卷
- 体育经纪人运动员经纪人职业发展与转型路径考核试卷
- 建筑物清洁服务中的物联网技术应用考核试卷
- 期货市场交易技能培训与模拟交易考核试卷
- 人工智能在电力系统中的电网智能化运维考核试卷
- 有线电视传输网络无线覆盖与接入技术考核试卷
- 服装生命周期管理考核试卷
- 信托与G网络频谱规划实施策略考核试卷
- 2025年不停电电源(UPS)项目合作计划书
- 2025年国家林业和草原局直属事业单位第一批招聘应届毕业生96人历年高频重点模拟试卷提升(共500题附带答案详解)
- 2025年春季开学典礼校长讲话稿-少年无畏凌云志扶摇直上入云苍
- 2025寒假开学第一课 课件【1】
- 2025年湖南食品药品职业学院高职单招职业适应性测试近5年常考版参考题库含答案解析
- 碳酸钙脱硫剂项目可行性研究报告立项申请报告模板
- 山东省泰安市新泰市2024-2025学年(五四学制)九年级上学期1月期末道德与法治试题(含答案)
- 1《北京的春节》课后练习(含答案)
- (完整版)陆河客家请神书
- 2025年行业协会年度工作计划
- DB3502T 160-2024 工业产品质量技术帮扶和质量安全监管联动工作规范
评论
0/150
提交评论