2024届重庆杨家坪中学高一数学第一学期期末学业质量监测模拟试题含解析_第1页
2024届重庆杨家坪中学高一数学第一学期期末学业质量监测模拟试题含解析_第2页
2024届重庆杨家坪中学高一数学第一学期期末学业质量监测模拟试题含解析_第3页
2024届重庆杨家坪中学高一数学第一学期期末学业质量监测模拟试题含解析_第4页
2024届重庆杨家坪中学高一数学第一学期期末学业质量监测模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届重庆杨家坪中学高一数学第一学期期末学业质量监测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.圆与圆有()条公切线A.0 B.2C.3 D.42.下列四个函数中,以为最小正周期,且在区间上为减函数的是A. B.C. D.3.函数f(x)=lnx+3x-4的零点所在的区间为()A. B.C. D.4.设全集,集合,,则()A. B.C. D.5.从800件产品中抽取6件进行质检,利用随机数表法抽取样本时,先将800件产品按001,002,…,800进行编号.如果从随机数表第8行第8列的数开始往右读数(随机数表第7行至第9行的数如下),则抽取的6件产品的编号的75%分位数是()……844217533157245506887704744767217633502583921206766301637859169556671169105671751286735807443952387933211234297864560782524207443815510013429966027954A.105 B.556C.671 D.1696.设集合,3,,则正确的是A.3, B.3,C. D.7.函数在区间上的最大值为A.1 B.4C.-1 D.不存在8.已知方程的两根为与,则()A.1 B.2C.4 D.69.图1是淘宝网某商户出售某种产品的数量与收支差额(销售额-投入的费用)的图象,销售初期商户为亏损状态,为了实现扭亏为盈,实行了某种措施,图2为实行措施后的图象,则关于两个图象的说法正确的是A.实行的措施可能是减少广告费用 B.实行的措施可能是提高商品售价C.点处累计亏损最多 D.点表明不出售商品则不亏损10.函数fxA.0 B.1C.2 D.3二、填空题:本大题共6小题,每小题5分,共30分。11.已知向量、满足:,,,则_________.12.已知点是角终边上一点,且,则的值为__________.13.设函数,若实数满足,且,则的取值范围是_______________________14.已知定义域为R的偶函数满足,当时,,则方程在区间上所有的解的和为___________.15.终边上一点坐标为,的终边逆时针旋转与的终边重合,则______.16.在平面直角坐标系xOy中,角α与角β均以x轴的非负半轴为始边,它们的终边关于坐标原点对称.若sinα=1三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.定义在上的函数,如果满足:对任意,存在常数,都有成立,则称是上的有界函数,其中称为函数的上界,已知函数(Ⅰ)若是奇函数,求的值(Ⅱ)当时,求函数在上的值域,判断函数在上是否为有界函数,并说明理由(Ⅲ)若函数在上是以为上界的函数,求实数的取值范围18.已知函数,(1)求函数的定义域;(2)判断函数的奇偶性,并说明理由;(3)如果,求x的取值范围.19.如图,直三棱柱ABC﹣A1B1C1中,M,N分别为棱AC和A1B1的中点,且AB=BC(1)求证:平面BMN⊥平面ACC1A1;(2)求证:MN∥平面BCC1B120.果园A占地约3000亩,拟选用果树B进行种植,在相同种植条件下,果树B每亩最多可种植40棵,种植成本(万元)与果树数量(百棵)之间的关系如下表所示.149161(1)根据以上表格中的数据判断:与哪一个更适合作为与的函数模型;(2)已知该果园的年利润(万元)与的关系为,则果树数量为多少时年利润最大?21.在平面直角坐标系xOy中,已知圆x2+y2-12x+32=0的圆心为Q,过点P(0,2)且斜率为k的直线l与圆Q相交于不同的两点A,B,记AB的中点为E(Ⅰ)若AB的长等于,求直线l的方程;(Ⅱ)是否存在常数k,使得OE∥PQ?如果存在,求k值;如果不存在,请说明理由

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解题分析】由题意可知圆的圆心为,半径为,圆的圆心为半径为∵两圆的圆心距∴∴两圆相交,则共有2条公切线故选B2、A【解题分析】最小正周期,且在区间上为减函数,适合;最小正周期为,不适合;最小正周期为,在区间上不单调,不适合;最小正周期为,在区间上为增函数,不适合.故选A3、B【解题分析】根据函数零点的判定定理可得函数的零点所在的区间【题目详解】解:函数在其定义域上单调递增,(2),(1),(2)(1)根据函数零点的判定定理可得函数的零点所在的区间是,故选【题目点拨】本题考查求函数的值及函数零点的判定定理,属于基础题4、B【解题分析】先求出集合B,再根据交集补集定义即可求出.【题目详解】,,,.故选:B.5、C【解题分析】由随机表及编号规则确定抽取的6件产品编号,再从小到大排序,应用百分位数的求法求75%分位数.【题目详解】由题设,依次读取的编号为,根据编号规则易知:抽取的6件产品编号为,所以将它们从小到大排序为,故,所以75%分位数为.故选:C6、D【解题分析】根据集合的定义与运算法则,对选项中的结论判断正误即可【题目详解】解:集合,3,,则,选项A错误;2,3,,选项B错误;,选项C错误;,选项D正确故选D【题目点拨】本题考查了集合的定义与运算问题,属于基础题7、C【解题分析】根据题干知,可画出函数图像,是开口向下的以y轴为对称轴的二次函数,在上单调递减,故最大值在1处取得得到-1.故答案为C8、D【解题分析】由一元二次方程的根与系数的关系得出两根的和与积,再凑配求解【题目详解】显然方程有两个实数解,由题意,,所以故选:D9、B【解题分析】起点不变,所以投入费用不变,扭亏为盈变快了,所以可能是提高商品售价,选B.点睛:有关函数图象识别问题,由解析式确定函数图象的判断技巧:(1)由函数的定义域,判断图象左右的位置,由函数的值域,判断图象的上下位置;②由函数的单调性,判断图象的变化趋势;③由函数的奇偶性,判断图象的对称性;④由函数的周期性,判断图象的循环往复.(2)由实际情景探究函数图象.关键是将问题转化为熟悉的数学问题求解,要注意实际问题中的定义域问题10、B【解题分析】作出函数图像,数形结合求解即可.【题目详解】解:根据题意,x3-1故函数y=x3与由于函数y=x3与所以方程x3所以函数fx故选:B二、填空题:本大题共6小题,每小题5分,共30分。11、.【解题分析】将等式两边平方得出的值,再利用结合平面向量的数量积运算律可得出结果.【题目详解】,,,因此,,故答案为.【题目点拨】本题考查利用平面向量数量积来计算平面向量的模,在计算时,一般将平面向量的模平方,利用平面向量数量积的运算律来进行计算,考查运算求解能力,属于中等题.12、【解题分析】由三角函数定义可得,进而求解即可【题目详解】由题,,所以,故答案为:【题目点拨】本题考查由三角函数值求终边上的点,考查三角函数定义的应用13、【解题分析】结合图象确定a,b,c的关系,由此可得,再利用基本不等式求其最值.【题目详解】解:因为函数,若实数a,b,c满足,且,;如图:,且;令;因为;,当且仅当时取等号;,;故答案为:14、【解题分析】根据给定条件,分析函数,函数的性质,再在同一坐标系内作出两个函数图象,结合图象计算作答.【题目详解】当时,,则函数在上单调递减,函数值从减到0,而是R上的偶函数,则函数在上单调递增,函数值从0增到,因,有,则函数的周期是2,且有,即图象关于直线对称,令,则函数在上递增,在上递减,值域为,且图象关于直线对称,在同一坐标系内作出函数和的图象,如图,观察图象得,函数和在上的图象有8个交点,且两两关于直线对称,所以方程在区间上所有解的和为.故答案为:【题目点拨】方法点睛:函数零点个数判断方法:(1)直接法:直接求出f(x)=0的解;(2)图象法:作出函数f(x)的图象,观察与x轴公共点个数或者将函数变形为易于作图的两个函数,作出这两个函数的图象,观察它们的公共点个数.15、【解题分析】由题知,进而根据计算即可.【题目详解】解:因为终边上一点坐标为,所以,因为的终边逆时针旋转与的终边重合,所以故答案为:16、-14【解题分析】根据题意,利用同角三角函数的基本关系,再由诱导公式,可得答案.【题目详解】∵角α与角β的终边关于坐标原点对称,所以β=α+由诱导公式可得:sinβ=-故答案为:-三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)是(3)或【解题分析】(1)根据奇函数定义得,解得的值(2)先分离得再根据单调性求值域,最后根据值域判定是否成立(3)转化为不等式恒成立,再分离变量得最值,最后根据最值求实数的取值范围试题解析:解:()由是奇函数,则,得,即,∴,()当时,∵,∴,∴,满足∴在上为有界函数()若函数在上是以为上界的有界函数,则有在上恒成立∴,即,∴,化简得:,即,上面不等式组对一切都成立,故,∴或18、(1);(2)见解析;(3)【解题分析】(1)根据真数大于零列不等式,解得结果,(2)根据奇函数定义判断并证明结果,(3)根据底与1的大小,结合对数函数单调性分类化简不等式,解得结果.【题目详解】(1)由,得-3<x<3,∴函数的定义域为(-3,3)(2)由(1)知,函数的定义域关于原点对称,且h(-x)+h(x)=0,h(-x)=-h(x),∴函数奇函数(3),所以,解得,所以.19、(1)见解析;(2)见解析【解题分析】(1)由面面垂直的性质定理证明平面,再由面面垂直的判定定理得证面面垂直;(2)取BC中点P,连接B1P和MP,可证MN∥PB1,从而可证线面平行【题目详解】(1)因为M为棱AC的中点,且AB=BC,所以BM⊥AC,又因为ABC﹣A1B1C1是直三棱柱,所以AA1⊥平面ABC因为BM⊂平面ABC,所以AA1⊥BM又因为AC,A1A⊂平面ACC1A1且AC∩A1A=A,所以BM⊥平面ACC1A1因为BM⊂平面BMN,所以:平面BMN⊥平面ACC1A1(2)取BC的中点P,连接B1P和MP,因为M、P为棱AC、BC的中点,所以MP∥AB,且MPAB,因为ABC﹣A1B1C1是直三棱柱,所以A1B1∥AB,A1B1=AB因为N为棱A1B1的中点,所以B1N∥BA,且B1NBA;所以B1N∥PM,且B1N=PM;所以MNB1P是平行四边形,所以MN∥PB1又因为MN⊄平面BCC,PB1⊂平面BCC1B1所以MN∥平面BCC1B1【题目点拨】本题考查证明面面垂直与线面平行,掌握它们的判定定理是解题关键.立体几何证明中,要由定理得出结论,必须满足定理的所有条件,缺一不可.有些不明显的结论需要证明,明显的结论也要列举出来,否则证明过程不完整20、(1)更适合作为与的函数模型(2)果树数量为时年利润最大【解题分析】(1)将点代入和,求出两个函数,然后将和代入,看哪个算出的数据接近实际数据哪个就更适合作为与的函数模型.(2)根据(1)可得,利用二次函数的性质求最大利润.【小问1详解】①若选择作为与的函数模型,将的坐标分别带入,得解得此时,当时,,当时,,与表格中的和相差较大,所以不适合作为与的函数模型.②若选择作为与的函数模型,将的坐标分别带入,得解得此时,当时,,当时,,刚好与表格中的和相符合,所以更适合作为与的函数模型.【小问2详解】由题可知,该果园最多120000棵该吕种果树,所以确定的取值范围为,令,则经计算,当时,取最大值(万元),即,时(每亩约38棵),利润最大.21、(Ⅰ)y=-+2或y=-x+2;(Ⅱ)不存在实数满足题意【解题分析】(Ⅰ)待定系数法,设出直线,再根据已知条件列式,解出即可;(Ⅱ)假设存在常数,将转化斜率相等,联立直线与圆,根据韦达定理,由直线与圆相交可求得范围.由斜率相等可求得的值,从而可判断结论【题目详解】(Ⅰ)圆Q的方程可写成(x-6)2+y2=4,所以圆心为Q(6,0)设过P(0,2)且斜率为k的直线方程为y=kx+2∵|AB|=,∴圆心Q到直线l的距离d==,∴=,即22k2+15k+2=0,解得k=-或k=-所以,满足题意的直线l方程为y=-+2或y=-x+2(Ⅱ)将直线l的方程y=x+2代入圆方程得x2+(kx+2)2-12x+32=0整理得

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论