2024届四川省成都市温江区数学高一上期末学业质量监测试题含解析_第1页
2024届四川省成都市温江区数学高一上期末学业质量监测试题含解析_第2页
2024届四川省成都市温江区数学高一上期末学业质量监测试题含解析_第3页
2024届四川省成都市温江区数学高一上期末学业质量监测试题含解析_第4页
2024届四川省成都市温江区数学高一上期末学业质量监测试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届四川省成都市温江区数学高一上期末学业质量监测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.定义在上的函数,当时,,若,则、、的大小关系为()A. B.C. D.2.某学校高一、高二、高三共有学生3500人,其中高三学生人数是高一学生人数的两倍,高二学生人数比高一学生人数多300人,现在用分层抽样的方法抽取的样本容量为35,则应抽取高一学生人数为()A.8 B.11C.16 D.103.函数的部分图象如图所示,则,的值分别是()A.2, B.2,C.4, D.4,4.的值为()A. B.C. D.5.定义在上的函数满足,且当时,.若关于的方程在上至少有两个实数解,则实数的取值范围为A. B.C. D.6.如图是一个几何体的三视图,根据图中数据,可得该几何体的表面积是()A. B.C. D.7.已知定义在R上的函数是奇函数,设,,,则有()A. B.C. D.8.著名数学家、物理学家牛顿曾提出:物体在空气中冷却,如果物体的初始温度为,空气温度为,则分钟后物体的温度(单位:)满足:.若常数,空气温度为,某物体的温度从下降到,大约需要的时间为()(参考数据:)A.分钟 B.分钟C.分钟 D.分钟9.设入射光线沿直线y=2x+1射向直线,则被反射后,反射光线所在的直线方程是A. B.C. D.10.在有声世界,声强级是表示声强度相对大小的指标.声强级(单位:dB)与声强度(单位:)之间的关系为,其中基准值.若声强级为60dB时的声强度为,声强级为90dB时的声强度为,则的值为()A.10 B.30C.100 D.1000二、填空题:本大题共6小题,每小题5分,共30分。11.已知是定义在R上的周期为2的奇函数,当时,,则___________.12.方程的解为__________13.已知函数,分别是定义在R上的偶函数和奇函数,且满足,则函数的解析式为____________________;若函数有唯一零点,则实数的值为____________________14.如图所示,某农科院有一块直角梯形试验田,其中.某研究小组计则在该试验田中截取一块矩形区域试种新品种的西红柿,点E在边上,则该矩形区域的面积最大值为___________.15.已知集合,则______16.已知,若方程有四个根且,则的取值范围是______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.函数的定义域为,且对一切,都有,当时,总有.(1)求的值;(2)判断单调性并证明;(3)若,解不等式.18.甲、乙两城相距100km,某天然气公司计划在两地之间建天然气站P给甲、乙两城供气,设P站距甲城.xkm,为保证城市安全,天然气站距两城市的距离均不得少于10km.已知建设费用y(万元)与甲、乙两地的供气距离(km)的平方和成正比(供气距离指天然气站到城市的距离),当天然气站P距甲城的距离为40km时,建设费用为1300万元.(1)把建设费用y(万元)表示成P站与甲城的距离x(km)的函数,并求定义域;(2)求天然气供气站建在距甲城多远时建设费用最小,并求出最小费用的值.19.已知是同一平面内的三个向量,其中(1)若,且,求:的坐标(2)若,且与垂直,求与夹角20.已知全集,集合,,.(1)若,求;(2)若,求实数a的取值范围.21.已知函数的图象(部分)如图所示,(1)求函数的解析式和对称中心坐标;(2)求函数的单调递增区间

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解题分析】令,求得,得到是奇函数,再令,证得在上递减判断.【题目详解】因为,令,得,解得,令,得,所以是奇函数,因时,,则,,令,则,,且,则,,所以,即,即,所以在上递减,,因为,所以,故选:C2、A【解题分析】先求出高一学生的人数,再利用抽样比,即可得到答案;【题目详解】设高一学生的人数为人,则高二学生人数为,高三学生人数为,,,故选:A3、B【解题分析】根据图象的两个点、的横坐标,得到四分之三个周期的值,得到周期的值,做出的值,把图象所过的一个点的坐标代入方程做出初相,写出解析式,代入数值得到结果【题目详解】解:由图象可得:,∴,∴,又由函数的图象经过,∴,∴,即,又由,则故选:B【题目点拨】本题考查由部分图象确定函数的解析式,属于基础题关键点点睛:本题解题的关键是利用代入点的坐标求出初相.4、A【解题分析】根据诱导公式以及倍角公式求解即可.【题目详解】原式.故选:A5、C【解题分析】原问题等价于函数与的图象至少有两个交点【题目详解】解:关于的方程在上至少有两个实数解,等价于函数与的图象至少有两个交点,因为函数满足,且当时,,所以当时,,时,,时,,所以的大致图象如图所示:因为表示恒过定点,斜率为的直线,所以要使两个函数图象至少有两个交点,由图可知只需,即,故选:C6、D【解题分析】根据三视图还原该几何体,然后可算出答案.【题目详解】由三视图可知该几何体是半径为1的球和底面半径为1,高为3的圆柱的组合体,故其表面积为球的表面积与圆柱的表面积之和,即故选:D7、D【解题分析】根据函数是奇函数的性质可求得m,再由函数的单调性和对数函数的性质可得选项.【题目详解】解:因为函数的定义在R上的奇函数,所以,即,解得,所以,所以在R上单调递减,又因为,,所以故选:D.8、D【解题分析】由已知条件得出,,,代入等式,求出即可得出结论.【题目详解】由题知,,,所以,,可得,所以,,.故选:D.9、D【解题分析】由可得反射点A(−1,−1),在入射光线y=2x+1上任取一点B(0,1),则点B(0,1)关于y=x的对称点C(1,0)在反射光线所在的直线上根据点A(−1,−1)和点C(1,0)坐标,利用两点式求得反射光线所在的直线方程是,化简可得x−2y−1=0.故选D.10、D【解题分析】根据题意,把转化为对数运算即可计算【题目详解】由题意可得:故选:D【题目点拨】数学中的新定义题目解题策略:(1)仔细阅读,理解新定义的内涵;(2)根据新定义,对对应知识进行再迁移.二、填空题:本大题共6小题,每小题5分,共30分。11、##【解题分析】根据函数的周期和奇偶性即可求得答案.【题目详解】因为函数的周期为2的奇函数,所以.故答案为:.12、【解题分析】令,则解得:或即,∴故答案为13、(1).(2).或【解题分析】把方程中的换成,然后利用奇偶性可得另一方程,联立可解得;令,可得为偶函数,从而可得关于对称,由函数有唯一零点,可得,从而可求得的值【题目详解】解:因为函数,分别是定义在上的偶函数和奇函数,所以,因为,①所以,即,②①②联立,可解得令,则,所以为偶函数,所以关于对称,因为有唯一的零点,所以的零点只能为,即,解得或故答案为:;或【题目点拨】关键点点睛:此题考查函数奇偶性的应用,考查函数的零点,解题的关键是令,可得为偶函数,从而可得关于对称,由函数有唯一零点,可得,从而可求得的值,考查数学转化思想和计算能力,属于中档题14、【解题分析】设,求得矩形面积的表达式,结合基本不等式求得最大值.【题目详解】设,,,,所以矩形的面积,当且仅当时等号成立.故选:15、【解题分析】∵∴,故答案为16、【解题分析】作出函数的图象,结合图象得出,,得到,结合指数函数的性质,即可求解.【题目详解】由题意,作出函数的图象,如图所示,因为方程有四个根且,由图象可知,,可得,则,设,所以,因为,所以,所以,所以,即,即的取值范围是.故答案为:.【题目点拨】本题主要考查了函数与方程的综合应用,其中解答中作出函数的图象,结合图象和指数函数的性质求解是解答的关键,着重考查数形结合思想,以及推理与运算能力.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)是上的增函数,证明见解析(3)【解题分析】(1)令代入即可.(2)证明单调性的一般思路是取,且再计算,故考虑取,代入,再利用当时,总有即可算得的正负,即可证明单调性.(3)利用将3写成的形式,再利用前两问的结论进行不等式的求解即可.【题目详解】(1)令,得,∴.(2)是上的增函数,证明:任取,且,则,∴,∴,即,∴是上的增函数.(3)由及,可得,结合(2)知不等式等价于,可得,解得.所以原不等式的解集为.【题目点拨】(1)单调性的证明方法:设定义域内的两个自变量,再计算,若,则为增函数;若,则为减函数.计算化简到最后需要判断每项的正负,从而判断的正负(2)利用单调性与奇偶性解决抽象函数不等式的问题,注意化简成的形式,若在区间上是增函数,则,并注意定义域.若在区间上是减函数,则,并注意定义域.18、(1);(2)天然气供气站建在距甲城50km时费用最小,最小费用的值为1250万元.【解题分析】(1)设出比例系数,根据题意得到建设费用y(万元)表示成P站与甲城距离x(km)的函数的解析式,再利用代入法求出比例系数,进而求出函数解析式、定义域;(2)利用配方法进行求解即可.【题目详解】(1)设比例系数为k,则又,,所以,即,所以(1)由(1)可得所以所以当时,y有最小值为1250万元所以天然气供气站建在距甲城50km时费用最小,最小费用的值为1250万元,19、(1)或;(2)【解题分析】解:(1)设(2)代入①中,20、(1)(2)【解题分析】(1)时,分别求出集合,,,再根据集合的运算求得答案;(2)根据,列出相应的不等式组,解得答案.【小问1详解】当时,,,所以,故.【小问2详解】因为,所以,解得.21、(1),对称中心;(2),【解题分析】(1)由函数的图象得出A,求出函数的四分之一周期,从而得出ω,代入最高点坐标求出φ,得函数的解析式,进而求出对称中心坐标;(2)令,从而得到函数的单调递增区间.【题目详解】(1)由题意可知,,,,又当时,函数取得最大值2,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论