版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
上海市杨浦区市级名校2024届数学高一上期末学业质量监测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知函数,若不等式对任意实数x恒成立,则a的取值范围为()A. B.C. D.2.若,且为第二象限角,则()A. B.C. D.3.设函数(),,则方程在区间上的解的个数是A. B.C. D.4.某人去上班,先跑步,后步行.如果y表示该人离单位的距离,x表示出发后的时间,那么下列图象中符合此人走法的是().A. B.C. D.5.已知直线,若,则的值为()A.8 B.2C. D.-26.管理人员从一池塘内随机捞出40条鱼,做上标记后放回池塘.10天后,又从池塘内随机捞出70条鱼,其中有标记的有2条.根据以上数据可以估计该池塘内鱼的总条数是()A.2800 B.1800C.1400 D.12007.函数的零点所在的区间是()A.(0,1) B.(1,2)C.(2,3) D.(3,4)8.若<α<π,化简的结果是()A. B.C. D.9.用a,b,c表示空间中三条不同的直线,γ表示平面,给出下列命题:①若a⊥b,b⊥c,则a∥c;②若a∥b,a∥c,则b∥c;③若a∥γ,b∥γ,则a∥b其中真命题的序号是()A.①② B.③C.①③ D.②10.计算器是如何计算,,,,等函数值的?计算器使用的是数值计算法,其中一种方法是用容易计算的多项式近似地表示这些函数,通过计算多项式的值求出原函数的值,如,,,其中.英国数学家泰勒(B.Taylor,1685-1731)发现了这些公式,可以看出,右边的项用得越多,计算得出的和的值也就越精确.运用上述思想,可得到的近似值为()A.0.50 B.0.52C.0.54 D.0.56二、填空题:本大题共6小题,每小题5分,共30分。11.已知平面,,直线,若,,则直线与平面的位置关系为______.12.某圆锥体的侧面展开图是半圆,当侧面积是时,则该圆锥体的体积是_______13.过两直线2x+y-8=0和x-2y+1=0的交点,且平行于直线4x-3y-7=0的直线方程为_______________.14.表示一位骑自行车和一位骑摩托车的旅行者在相距80km的甲、乙两城间从甲城到乙城所行驶的路程与时间之间的函数关系,有人根据函数图象,提出了关于这两个旅行者的如下信息:①骑自行车者比骑摩托车者早出发3h,晚到1h;②骑自行车者是变速运动,骑摩托车者是匀速运动;③骑摩托车者在出发1.5h后追上了骑自行车者;④骑摩托车者在出发1.5h后与骑自行车者速度一样其中,正确信息的序号是________15.如图,网格纸上正方形小格的边长为1,图中粗线画出的是某三棱锥的三视图,则该三棱锥的体积为__________16.函数,在区间上增数,则实数t的取值范围是________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图所示,在多面体中,四边形是正方形,,为的中点.(1)求证:平面;(2)求证:平面平面.18.求满足以下条件的m值.(1)已知直线2mx+y+6=0与直线(m-3)x-y+7=0平行;(2)已知直线mx+(1-m)y=3与直线(m-1)x+(2m+3)y=2互相垂直.19.设函数,(1)求函数的值域;(2)设函数,若对,,,求正实数a的取值范围20.某企业生产,两种产品,根据市场调查与预测,产品的利润与投资成正比,其关系如图(1)所示;产品的利润与投资的算术平方根成正比,其关系如图(2)所示(注:利润和投资的单位均为万元)图(1)图(2)(1)分别求,两种产品的利润关于投资的函数解析式(2)已知该企业已筹集到18万元资金,并将全部投入,两种产品的生产①若平均投入两种产品的生产,可获得多少利润?②如果你是厂长,怎样分配这18万元投资,才能使该企业获得最大利润?其最大利润为多少万元?21.在①;②函数为偶函数:③0是函数的零点这三个条件中选一个条件补充在下面问题中,并解答下面的问题问题:已知函数,,且______(1)求函数的解析式;(2)判断函数在区间上的单调性,并用定义证明注:如果选择多个条件分别解答,按第一个解答计分
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解题分析】先分析出的奇偶性,再得出的单调性,由单调性结合奇偶性解不等式得到,再利用均值不等式可得答案.【题目详解】的定义域满足,由,所以在上恒成立.所以的定义域为则所以,即为奇函数.设,由上可知为奇函数.当时,,均为增函数,则在上为增函数.所以在上为增函数.又为奇函数,则在上为增函数,且所以在上为增函数.所以在上为增函数.由,即所以对任意实数x恒成立即,由当且仅当,即时得到等号.所以故选:C2、A【解题分析】由已知利用诱导公式求得,进一步求得,再利用三角函数的基本关系式,即可求解【题目详解】由题意,得,又由为第二象限角,所以,所以故选:A.3、A【解题分析】由题意得,方程在区间上的解的个数即函数与函数的图像在区间上的交点个数在同一坐标系内画出两个函数图像,注意当时,恒成立,易得交点个数为.选A点睛:函数零点的求解与判断方法:(1)直接求零点:令f(x)=0,如果能求出解,则有几个解就有几个零点(2)零点存在性定理:利用定理不仅要函数在区间[a,b]上是连续不断的曲线,且f(a)·f(b)<0,还必须结合函数的图象与性质(如单调性、奇偶性)才能确定函数有多少个零点(3)利用图象交点的个数:将函数变形为两个函数的差,画两个函数的图象,看其交点的横坐标有几个不同的值,就有几个不同的零点.但在应用图象解题时要注意两个函数图象在同一坐标系内的相对位置,要做到观察仔细,避免出错4、D【解题分析】根据随时间的推移该人所走的距离的大小的变化快慢,从而即可获得问题的解答,即先利用时的函数值排除两项,再利用曲线的斜率反映行进速度的特点选出正确结果【题目详解】解:由题意可知:时所走的路程为0,离单位的距离为最大值,排除A、C,随着时间的增加,先跑步,开始时随的变化快,后步行,则随的变化慢,所以适合的图象为D;故选:D5、D【解题分析】根据两条直线垂直,列方程求解即可.【题目详解】由题:直线相互垂直,所以,解得:.故选:D【题目点拨】此题考查根据两条直线垂直,求参数的取值,关键在于熟练掌握垂直关系的表达方式,列方程求解.6、C【解题分析】由从池塘内捞出70条鱼,其中有标记的有2条,可得所有池塘中有标记的鱼的概率,结合池塘内具有标记的鱼一共有40条鱼,按照比例即得解.【题目详解】设估计该池塘内鱼的总条数为,由题意,得从池塘内捞出70条鱼,其中有标记的有2条,所有池塘中有标记的鱼的概率为:,又因为池塘内具有标记的鱼一共有40条鱼,所以,解得,即估计该池塘内共有条鱼故选:C7、B【解题分析】先求得函数的单调性,利用函数零点存在性定理,即可得解.【题目详解】解:因为函数均为上的单调递减函数,所以函数在上单调递减,因为,,所以函数的零点所在的区间是.故选:B8、A【解题分析】利用三角函数的平方关系式,根据角的范围化简求解即可【题目详解】=因为<α<π所以cos<0,结果为,故选A.【题目点拨】本题考查同角三角函数的基本关系式的应用,三角函数式的化简求值,考查计算能力9、D【解题分析】因为空间中,用a,b,c表示三条不同的直线,①中正方体从同一点出发的三条线,满足已知但是a⊥c,所以①错误;②若a∥b,b∥c,则a∥c,满足平行线公理,所以②正确;③平行于同一平面的两直线的位置关系可能是平行、相交或者异面,所以③错误;故选D10、C【解题分析】根据新定义,直接计算取近似值即可.【题目详解】由题意,故选:C二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】根据面面平行的性质即可判断.【题目详解】若,则与没有公共点,,则与没有公共点,故.故答案为:.【题目点拨】本题考查面面平行的性质,属于基础题.12、【解题分析】设圆锥的母线长为,底面半径为,则,,,,所以圆锥的高为,体积为.考点:圆锥的侧面展开图与体积.13、【解题分析】联立两直线方程求得交点坐标,求出平行于直线4x-3y-7=0的直线的斜率,由点斜式的直线方程,并化为一般式【题目详解】联立,解得∴两条直线2x+y-8=0和x-2y+1=0的交点为(3,2),∵直线4x-3y-7=0的斜率为,∴过两条直线2x+y-8=0和x-2y+1=0的交点,且平行于直线4x-3y-7=0的直线的方程为y-2=(x-3)即为4x-3y-6=0故答案为4x-3y-6=0【题目点拨】本题考查了直线的一般式方程与直线平行的关系,训练了二元一次方程组的解法,是基础题14、①②③【解题分析】看时间轴易知①正确;骑摩托车者行驶的路程与时间的函数图象是直线,所以是匀速运动,而骑自行车者行驶的路程与时间的函数图象是折线,所以是变速运动,因此②正确;两条曲线的交点的横坐标对应着4.5,故③正确,④错误故答案为①②③.点睛:研究函数问题离不开函数图象,函数图象反映了函数的所有性质,在研究函数问题时要时时刻刻想到函数的图象,学会从函数图象上去分析问题、寻找解决问题的方法15、1【解题分析】由图可知,该三棱锥的体积为V=16、【解题分析】作出函数的图象,数形结合可得结果.【题目详解】解:函数的图像如图.由图像可知要使函数是区间上的增函数,则.故答案为【题目点拨】本题考查函数的单调性,考查函数的图象的应用,考查数形结合思想,属于简单题目.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)见解析;(2)见解析.【解题分析】(1)设与交于点,连接易证得四边形为平行四边形,所以,进而得证;(2)先证得平面,再证得⊥平面,又,得平面,从而证得平面,即可证得.试题解析:(1)设与交于点,连接.∵分别为中点,∴∴,∴四边形为平行四边形,所以,又∴平面∴平面(2)平面⊥平面,又平面平面,又平面,所以平面平面.18、(1)(2)或【解题分析】(1)平行即两直线的斜率相等,建立等式,即可得出答案.(2)直线垂直即两直线斜率之积为-1,建立等式,即可得出答案.【题目详解】解:(1)当m=0或m=3时,两直线不平行当m0且m3时,若两直线平行,则(2)当m=0或m=时,两直线不垂直当m=1时,两直线互相垂直当m0,1,时,若两直线垂直,则或也可用m(m-1)+(1-m)(2m+3)=0,即m2+2m-3=0,解得m=1,或m=-3.【题目点拨】本道题目考查了直线平行或垂直的判定条件,注意,当x,y的系数含有参数的时候,要考虑系数是否为0.19、(1);(2).【解题分析】(1)由题可得,利用基本不等式可求函数的值域;(2)由题可求函数在上的值域,由题可知函数在上的值域包含于函数在上的值域,由此可求正实数a的取值范围【小问1详解】∵,又,,∴,当且仅当,即时取等号,所以,即函数的值域为【小问2详解】∵,设,因为,所以,函数在上单调递增,∴,即,设时,函数的值域为A.由题意知,∵函数,函数图象的对称轴为,当,即时,函数在上递增,则,即,∴,当时,即时,函数在上的最大值为,中的较大者,而且,不合题意,当,即时,函数在上递减,则,即,满足条件的a不存在,综上,20、(1),;(2)当,两种产品分别投入2万元,16万元时,可使该企业获得最大利润,最大利润为万元【解题分析】(1)设投资为万元(),设,,根据函数的图象,求得的值,即可得到函数的解析式;,(2)①由(1)求得,,即可得到总利润.②设产品投入万元,产品投入万元,得到则,结合二次函数的图象与性质,即可求解【题目详解】(1)设投资为万元(),,两种产品所获利润分别为,万元,由题意可设,,其中,是不为零的常数所以根据图象可得,,,,所以,(2)①由(1)得,,所以总利润为万元②设产品投入万元,产品投入万元,该企业可获总利润为万元,则,令,则,且,则,当时,,此时,当,两种产品分别投入2万元,16万元时,可使该企业获得最大利润,最大利润为万元【题目点拨】本题主要考查了函数的实际应用问题,其中解答中能够从图象中准确地获取信息,利用待定系数法求得函数的解析式,再结合二次函数的图象与性质是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题21、(1)(2)单调递增,证明见解析【解
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 郴州文物百颂作者:湖南省郴州市五岭大道陈友训
- 2024届安徽省马鞍山市高三1月月考(期末)数学试题
- 搽剂产业链招商引资的调研报告
- 手提包式公文包产业深度调研及未来发展现状趋势
- 可生物降解的盘子产业运行及前景预测报告
- 食品安全与预制菜管理方案
- 公文箱产业运行及前景预测报告
- 高层建筑配电室消防方案
- 轨道交通工程验收实施方案
- 网络安全及保密培训
- 蒲城清洁能源化工有限责任公司70万吨年煤制烯烃项目脱盐水
- 职业技能大赛-食品安全管理师竞赛理论知识题及答案
- GB/T 44340-2024粮食储藏玉米安全储藏技术规范
- 点亮文明 课件 2024-2025学年苏少版(2024)初中美术七年级上册
- 膀胱过度活动综合征
- 建设用地土壤污染风险筛选值和管制值(基本项目)
- 销售心态 培训课件
- 垃圾渗滤液处理站运维及渗滤液处理投标方案(技术方案)
- 2024年政府采购评审专家考试题库含答案
- 2024届广西南宁市三中高三第一次适应性考试历史试题及答案
- 高职建筑设计专业《建筑构造与识图》说课课件
评论
0/150
提交评论