浙江省金华市武义第三中学2024届高一上数学期末考试模拟试题含解析_第1页
浙江省金华市武义第三中学2024届高一上数学期末考试模拟试题含解析_第2页
浙江省金华市武义第三中学2024届高一上数学期末考试模拟试题含解析_第3页
浙江省金华市武义第三中学2024届高一上数学期末考试模拟试题含解析_第4页
浙江省金华市武义第三中学2024届高一上数学期末考试模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

浙江省金华市武义第三中学2024届高一上数学期末考试模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.过定点(1,0)的直线与、为端点的线段有公共点,则k的取值范围是()A. B.C. D.2.已知扇形的圆心角为,面积为,则扇形的弧长等于(

)A. B.C. D.3.我国南宋时期著名的数学家秦九韶在其著作《数书九章》中独立提出了一种求三角形面积的方法“三斜求积术”,即的面积,其中分别为的内角的对边,若,且,则的面积的最大值为()A. B.C. D.4.已知角的终边经过点,则().A. B.C. D.5.设,则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件6.“”是“”成立的条件A.充分不必要 B.必要不充分C.充分必要 D.既不充分又不必要7.已知偶函数f(x)在区间单调递增,则满足的x取值范围是()A. B.C. D.8.设实数t满足,则有()A. B.C. D.9.我国著名数学家华罗庚先生曾说:“数缺形时少直观,形缺数时难入微,数形结合百般好,隔裂分家万事休.”在数学的学习和研究中,常用函数的图象来研究函数的性质,也可用函数的解析式来琢磨函数的图象的特征,如通过函数的解析式可判断其在区间的图象大致为()A. B.C. D.10.一条直线与两条平行线中的一条为异面直线,则它与另一条()A.相交 B.异面C.相交或异面 D.平行二、填空题:本大题共6小题,每小题5分,共30分。11.若()与()互为相反数,则的最小值为______.12.满足的集合的个数是______________13.已知扇形的弧长为,半径为1,则扇形的面积为___________.14.某同学在研究函数

f(x)=(x∈R)

时,分别给出下面几个结论:①等式f(-x)=-f(x)在x∈R时恒成立;②函数f(x)的值域为(-1,1);③若x1≠x2,则一定有f(x1)≠f(x2);④方程f(x)=x在R上有三个根其中正确结论的序号有______.(请将你认为正确的结论的序号都填上)15.化简___________.16.记函数的值域为,在区间上随机取一个数,则的概率等于__________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.给出以下三个条件:①点和为函数图象的两个相邻的对称中心,且;②;③直线是函数图象的一条对称轴从这三个条件中任选两个条件将下面题目补充完整,并根据要求解题已知函数.满足条件________与________(1)求函数的解析式;(2)把函数的图象向右平移个单位长度,再将所得到的函数图象上的所有点的横坐标变为原来倍(纵坐标不变),得到函数的图象.当时,函数的值域为,求实数的取值范围18.如图,在四棱锥P-ABCD中,底面ABCD是平行四边形,∠BCD=60°,AB=2AD,PD⊥平面ABCD,点M为PC的中点(1)求证:PA∥平面BMD;(2)求证:AD⊥PB;(3)若AB=PD=2,求点A到平面BMD的距离19.设关于x二次函数(1)若,解不等式;(2)若不等式在上恒成立,求实数m的取值范围20.(1)化简:(2)求值:21.已知全集,,集合(1)求;(2)求

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解题分析】画出示意图,结合图形及两点间的斜率公式,即可求解.【题目详解】作示意图如下:设定点为点,则,,故由题意可得的取值范围是故选:C【题目点拨】本题考查两点间直线斜率公式的应用,要特别注意,直线与线段相交时直线斜率的取值情况.2、C【解题分析】根据圆心角可以得出弧长与半径的关系,根据面积公式可得出弧长【题目详解】由题意可得,所以【题目点拨】本题考查扇形的面积公式、弧长公式,属于基础题3、A【解题分析】先根据求出关系,代入面积公式,利用二次函数的知识求解最值.【题目详解】因为,所以,即;由正弦定理可得,所以;当时,取到最大值.故选:A.4、A【解题分析】根据三角函数的概念,,可得结果.【题目详解】因为角终边经过点所以故选:A【题目点拨】本题主要考查角终边过一点正切值的计算,属基础题.5、A【解题分析】首先求解二次不等式,然后结合不等式的解集即可确定充分性和必要性是否成立即可.【题目详解】求解二次不等式可得:或,据此可知:是的充分不必要条件.故选:A.【题目点拨】本题主要考查二次不等式的解法,充分性和必要性的判定,属于基础题.6、B【解题分析】求出不等式的等价条件,结合不等式的关系以及充分条件和必要条件的定义进行判断即可【题目详解】由不等式“”,解得,则“”是“”成立的必要不充分条件即“”是“”成立的必要不充分条件,故选B【题目点拨】本题主要考查了充分条件和必要条件的判断,其中解答中结合不等式的关系是解决本题的关键,着重考查了推理与判断能力,属于基础题.7、A【解题分析】由偶函数性质得函数在上的单调性,然后由单调性解不等式【题目详解】因为偶函数在区间上单调递增,所以在区间上单调递减,故越靠近轴,函数值越小,因为,所以,解得:.故选:A8、B【解题分析】由,得到求解.【题目详解】解:因为,所以,所以,,则,故选:B9、A【解题分析】根据函数的定义域,函数的奇偶性,函数值的符号及函数的零点即可判断出选项.【题目详解】当时,令,得或,且时,;时,,故排除选项B.因为为偶函数,为奇函数,所以为奇函数,故排除选项C;因为时,函数无意义,故排除选项D;故选:A10、C【解题分析】如下图所示,三条直线平行,与异面,而与异面,与相交,故选C.二、填空题:本大题共6小题,每小题5分,共30分。11、2【解题分析】有题设得到,利用基本不等式求得最小值.【题目详解】由题知,,则,,则,当且仅当时等号成立,故答案为:212、4【解题分析】利用集合的子集个数公式求解即可.【题目详解】∵,∴集合是集合的子集,∴集合的个数为,故答案为:.13、##【解题分析】利用扇形面积公式进行计算.【题目详解】即,,由扇形面积公式得:.故答案为:14、①②③【解题分析】由奇偶性的定义判断①正确,由分类讨论结合反比例函数的单调性求解②;根据单调性,结合单调区间上的值域说明③正确;由只有一个根说明④错误【题目详解】对于①,任取,都有,∴①正确;对于②,当时,,根据函数的奇偶性知时,,且时,,②正确;对于③,则当时,,由反比例函数的单调性以及复合函数知,在上是增函数,且;再由的奇偶性知,在上也是增函数,且时,一定有,③正确;对于④,因为只有一个根,∴方程在上有一个根,④错误.正确结论的序号是①②③.故答案为:①②③【题目点拨】本题通过对多个命题真假的判断,综合考查函数的单调性、函数的奇偶性、函数的图象与性质,属于难题.这种题型综合性较强,也是高考的命题热点,同学们往往因为某一处知识点掌握不好而导致“全盘皆输”,因此做这类题目更要细心、多读题,尽量挖掘出题目中的隐含条件,另外,要注意从简单的自己已经掌握的知识点入手,然后集中精力突破较难的命题.15、【解题分析】利用向量的加法运算,即可得到答案;【题目详解】,故答案为:16、【解题分析】因为;所以的概率等于点睛:(1)当试验的结果构成的区域为长度、面积、体积等时,应考虑使用几何概型求解(2)利用几何概型求概率时,关键是试验的全部结果构成的区域和事件发生的区域的寻找,有时需要设出变量,在坐标系中表示所需要的区域(3)几何概型有两个特点:一是无限性,二是等可能性.基本事件可以抽象为点,尽管这些点是无限的,但它们所占据的区域都是有限的,因此可用“比例解法”求解几何概型的概率三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)条件选择见解析,;(2).【解题分析】(1)选①②,根据条件可求得函数的最小正周期,可求得的值,由②结合的取值范围,可求得的值,即可得出函数的解析式;选①③,根据条件可求得函数的最小正周期,可求得的值,由③结合的取值范围,可求得的值,即可得出函数的解析式;选②③,分别由②、③可得出关于的表达式,两式作差可得出关于的等式,结合的取值范围可求得的值,再由②结合的取值范围,可求得的值,即可得出函数的解析式;(2)利用三角函数图象变换求得,由,得,分析可知函数,的值域为,由此可得出关于实数的不等式,由此可解得实数的取值范围.【小问1详解】解:设函数的最小正周期为,若选择①②,由①知,由②知,即,则,解得,又因为,所以,所以若选择①③,由①知,,由③知,解得又因为,所以,所以若选择②③,由②知,即,所以,由③知两式相减得,所以,因为,所以当时,,又因为,所以,所以【小问2详解】解:将向右平移个单位后得再把得到的函数图像上的所有点的横坐标变为原来的倍(纵坐标不变),得到函数,由,得因为的值域为,所以,的值域为所以,即.所以实数的取值范围为18、(1)详见解析;(2)详见解析;(3).【解题分析】(1)设AC和BD交于点O,MO为三角形PAC的中位线可得MO∥PA,再利用直线和平面平行的判定定理,证得结论(2)由PD⊥平面ABCD,可得PD⊥AD,再由cos∠BAD,证得AD⊥BD,可证AD⊥平面PBD,从而证得结论(3)点A到平面BMD的距离等于点C到平面BMD的距离h,求出MN、MO的值,利用等体积法求得点C到平面MBD的距离h【题目详解】(1)证明:设AC和BD交于点O,则由底面ABCD是平行四边形可得O为AC的中点由于点M为PC的中点,故MO为三角形PAC的中位线,故MO∥PA.再由PA不在平面BMD内,而MO在平面BMD内,故有PA∥平面BMD(2)由PD⊥平面ABCD,可得PD⊥AD,平行四边形ABCD中,∵∠BCD=60°,AB=2AD,∴cos∠BADcos60°,∴AD⊥BD这样,AD垂直于平面PBD内的两条相交直线,故AD⊥平面PBD,∴AD⊥PB(3)若AB=PD=2,则AD=1,BD=AB•sin∠BAD=2,由于平面BMD经过AC的中点,故点A到平面BMD的距离等于点C到平面BMD的距离取CD得中点N,则MN⊥平面ABCD,且MNPD=1设点C到平面MBD的距离为h,则h为所求由AD⊥PB可得BC⊥PB,故三角形PBC为直角三角形由于点M为PC的中点,利用直角三角形斜边的中线等于斜边的一半,可得MD=MB,故三角形MBD为等腰三角形,故MO⊥BD由于PA,∴MO由VM﹣BCD=VC﹣MBD可得,•()•MN•(BD×MO)×h,故有()×1•()•h,解得h【题目点拨】本题主要考查直线和平面平行的判定定理,直线和平面垂直的性质,用等体积法求点到平面的距离,体现了数形结合和等价转化的数学思想,属于中档题19、(1);(2).【解题分析】(1)由题设有,解一元二次不等式求解集即可.(2)由题意在上恒成立,令并讨论m范围,结合二次函数的性质求参数范围.【小问1详解】由

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论