2024届上海建平中学数学高一上期末综合测试模拟试题含解析_第1页
2024届上海建平中学数学高一上期末综合测试模拟试题含解析_第2页
2024届上海建平中学数学高一上期末综合测试模拟试题含解析_第3页
2024届上海建平中学数学高一上期末综合测试模拟试题含解析_第4页
2024届上海建平中学数学高一上期末综合测试模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届上海建平中学数学高一上期末综合测试模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.过定点(1,0)的直线与、为端点的线段有公共点,则k的取值范围是()A. B.C. D.2.关于函数的叙述中,正确的有()①的最小正周期为;②在区间内单调递增;③是偶函数;④的图象关于点对称.A.①③ B.①④C.②③ D.②④3.()A. B.1C.0 D.﹣14.幂函数的图象过点,则函数的值域是()A. B.C. D.5.不等式的解集是()A. B.C. D.6.若向量满足:则A.2 B.C.1 D.7.若,,,则有A. B.C. D.8.入冬以来,雾霾天气在部分地区频发,给人们的健康和出行造成严重的影响.经研究发现,工业废气等污染排放是雾霾形成和持续的重要因素,治理污染刻不容缓.为降低对空气的污染,某工厂采购一套废气处理装备,使工业生产产生的废气经过过滤后再排放.已知过滤过程中废气的污染物数量P(单位:mg/L)与过滤时间t(单位:h)间的关系为(,k均为非零常数,e为自然对数底数),其中为t=0时的污染物数量,若经过3h处理,20%的污染物被过滤掉,则常数k的值为()A. B.C. D.9.已知函数在上是增函数,则的取值范围是()A. B.C. D.10.若将函数的图象上所有点的横坐标缩短为原来的一半(纵坐标不变),再将所得图象向左平移个单位长度,得到函数的图象,则下列说法正确的是()A.的最小正周期为 B.在区间上单调递减C.图象的一条对称轴为直线 D.图象的一个对称中心为二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数,若存在,使得f()=g(),则实数a的取值范围为___12.不等式的解集为_____________.13.已知集合,则的元素个数为___________.14.函数的值域是__________.15.函数y=的定义域是______.16.已知函数的定义域为,当时,,若,则的解集为______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数(常数).(1)当时,用定义证明在区间上是严格增函数;(2)根据的不同取值,判断函数的奇偶性,并说明理由;(3)令,设在区间上的最小值为,求的表达式.18.已知函数,(,且)(1)求函数的定义域;(2)判断函数的奇偶性,并证明19.已知函数是定义域为R的奇函数.(1)求t的值,并写出的解析式;(2)判断在R上的单调性,并用定义证明;(3)若函数在上的最小值为,求k的值.20.阅读材料:我们研究了函数的单调性、奇偶性和周期性,但是这些还不能够准确地描述出函数的图象,例如函数和,虽然它们都是增函数,图象在上都是上升的,但是却有着显著的不同.如图1所示,函数的图象是向下凸的,在上任意取两个点,函数的图象总是在线段的下方,此时函数称为下凸函数;函数的图象是向上凸的,在上任意取两个点,函数的图象总是在线段的上方,则函数称为上凸函数.具有这样特征的函数通常称做凸函数.定义1:设函数是定义在区间I上的连续函数,若,都有,则称为区间I上的下凸函数.如图2.下凸函数的形状特征:曲线上任意两点之间的部分位于线段的下方.定义2:设函数是定义在区间I上的连续函数,若,都有,则称为区间I上的上凸函数.如图3.上凸函数的形状特征:曲线上任意两点之间的部分位于线段的上方.上凸(下凸)函数与函数的定义域密切相关的.例如,函数在为上凸函数,在上为下凸函数.函数的奇偶性和周期性分别反映的是函数图象的对称性和循环往复,属于整体性质;而函数的单调性和凸性分别刻画的是函数图象的升降和弯曲方向,属于局部性质.关于函数性质的探索,对我们的启示是:在认识事物和研究问题时,只有从多角度、全方位加以考查,才能使认识和研究更加准确.结合阅读材料回答下面的问题:(1)请尝试列举一个下凸函数:___________;(2)求证:二次函数是上凸函数;(3)已知函数,若对任意,恒有,尝试数形结合探究实数a的取值范围.21.已知圆,直线.(1)若直线与圆交于不同的两点,当时,求的值.(2)若是直线上的动点,过作圆的两条切线,切点为,探究:直线是否过定点;(3)若为圆的两条相互垂直的弦,垂足为,求四边形的面积的最大值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解题分析】画出示意图,结合图形及两点间的斜率公式,即可求解.【题目详解】作示意图如下:设定点为点,则,,故由题意可得的取值范围是故选:C【题目点拨】本题考查两点间直线斜率公式的应用,要特别注意,直线与线段相交时直线斜率的取值情况.2、C【解题分析】应用差角余弦公式、二倍角正余弦公式及辅助角公式可得,再根据正弦型函数的性质,结合各项描述判断正误即可.【题目详解】,∴最小正周期,①错误;令,则在上递增,显然当时,②正确;,易知为偶函数,③正确;令,则,,易知的图象关于对称,④错误;故选:C3、C【解题分析】直接利用诱导公式以及特殊角的三角函数求解即可.【题目详解】.故选:C.4、C【解题分析】设,带点计算可得,得到,令转化为二次函数的值域求解即可.【题目详解】设,代入点得,则,令,函数的值域是.故选:C.5、B【解题分析】利用一元二次不等式的解法即得.【题目详解】由可得,,故不等式的解集是.故选:B.6、B【解题分析】由题意易知:即,,即.故选B.考点:向量的数量积的应用.7、C【解题分析】根据指数函数和对数函数的单调性分别将与作比较,从而得到结果.【题目详解】本题正确选项:【题目点拨】本题考查根据指数函数、对数函数单调性比较大小的问题,常用方法是采用临界值的方式,通过与临界值的大小关系得到所求的大小关系.8、A【解题分析】由题意可得,从而得到常数k的值.【题目详解】由题意可得,∴,即∴故选:A9、C【解题分析】若函数f(x)=log2(x2﹣ax+3a)在[2,+∞)上是增函数,则x2﹣ax+3a>0且f(2)>0,根据二次函数的单调性,我们可得到关于a的不等式,解不等式即可得到a的取值范围【题目详解】若函数f(x)=log2(x2﹣ax+3a)在[2,+∞)上是增函数,则当x∈[2,+∞)时,x2﹣ax+3a>0且函数f(x)=x2﹣ax+3a为增函数即,f(2)=4+a>0解得﹣4<a≤4故选C【题目点拨】本题考查的知识点是复合函数的单调性,二次函数的性质,对数函数的单调区间,其中根据复合函数的单调性,构造关于a的不等式,是解答本题的关键10、D【解题分析】根据题意函数的图象上所有点的横坐标缩短为原来的一半(纵坐标不变),再将所得图象向左平移个单位长度,得到函数,即可求出最小正周期,把看成是整体,分别求的单调递减区间、对称轴、对称中心,在分别验证选项即可得到答案.【题目详解】由于函数的图象上所有点的横坐标缩短为原来的一半(纵坐标不变),故函数的解析式为,再将所得图象向左平移个单位长度,.,故A错误;的单调减区间为,故在区间内不单调递减;图象的对称轴为,不存在使得图象的一条对称轴为直线,故C错误;图象的对称中心的横坐标为,当时,图象的一个对称中心为,故D正确.故选:D.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】先求出的值域,再求出的值域,利用和得到不等式组求解即可.【题目详解】因为,所以,故,即因为,依题意得,解得故答案为:.12、【解题分析】将不等式转化为,利用指数函数的单调性求解.【题目详解】不等式为,即,解得,所以不等式的解集为,故答案为:13、5【解题分析】直接求出集合A、B,再求出,即可得到答案.【题目详解】因为集合,集合,所以,所以的元素个数为5.故答案为:5.14、【解题分析】首先换元,再利用三角变换,将函数转化为关于二次函数,再求值域.【题目详解】设,因为,所以,则,,当时,函数取得最小值,当时,函数取得最大值,所以函数的值域是故答案为:15、【解题分析】要使函数有意义,需满足,函数定义域为考点:函数定义域16、##【解题分析】构造,可得在上单调递减.由,转化为,利用单调性可得答案【题目详解】由,得,令,则,又,所以在上单调递减由,得,因为,所以,所以,得故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)证明见解析(2)当时,奇函数;当时,非奇非偶函数,理由见解析.(3)【解题分析】(1)当时,得到函数,利用函数单调性的定义,即可作出证明;(2)分和两种情况,结合函数的奇偶性的定义,即可得出结论.(3)根据正负性,结合具体类型的函数的单调性,进行分类讨论可以求出的表达式;【小问1详解】当时,函数,设且,则,因为,可得又由,可得,所以所以,即,所以函数是上是严格增函数.【小问2详解】由函数的定义域为关于原点对称,当时,函数,可得,此时函数为奇函数;当时,,此时且,所以时,函数为非奇非偶函数.【小问3详解】,当时,,函数在区间的最小值为;当时,函数的对称轴为:.若,在区间的最小值为;若,在区间的最小值为;若,在区间的最小值为;当时,,在区间的最小值为.综上所述:;18、(1)(2)函数为定义域上的偶函数,证明见解析【解题分析】(1)由题意可得,解不等式即可求出结果;(2)令,证得,根据偶函数的定义即可得出结论.【小问1详解】由,则有,得.则函数的定义域为【小问2详解】函数为定义域上的偶函数令,则,又则,有成立则函数为在定义域上的偶函数19、(1)或,;(2)R上单调递增,证明见解析;(3)【解题分析】(1)是定义域为R的奇函数,利用奇函数的必要条件,求出的值,进而求出,验证是否为奇函数;(2)可判断在上为增函数,用函数的单调性定义加以证明,取两个不等的自变量,对应函数值做差,因式分解,判断函数值差的符号,即可证明结论;(3)由,换元令,,由(2)得,,根据条件转化为在最小值为-2,对二次函数配方,求出对称轴,分类讨论求出最小值,即可求解【题目详解】解:(1)因为是定义域为R的奇函数,所以,即,解得或,可知,此时满足,所以.(2)在R上单调递增.证明如下:设,则.因为,所以,所以,可得.因为当时,有,所以R单调递增.(3)由(1)可知,令,则,因为是增函数,且,所以.因为在上的最小值为,所以在上的最小值为.因为,所以当时,,解得或(舍去);当时,,不合题意,舍去.综上可知,.【题目点拨】本题考查函数的奇偶性应用和单调性的证明,考查复合函数的最值,用换元方法,将问题化归为二次函数函数的最值,属于较难题.20、(1),;(2)证明见解析;(3).【解题分析】(1)根据下凸函数的定义举例即可;(2)利用上凸函数定义证明即可;(3)根据(2)中结论,结合条件,函数满足上凸函数定义,根据数形结合求得参数取值范围.【小问1详解】,;【小问2详解】对于二次函数,,满足,即,满足上凸函数定义,二次函数是上凸函数.【小问3详解】由(2)知二次函数是上凸函数,同理易得二次函数为下凸函数,对于函数,其图像可以由两个二次函数的部分图像组成,如图所示,若对任意,恒有,则函数满足上凸函数定义,即,即.21、(1);(2)直线过

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论