贵州省“阳光校园·空中黔课”阶段性检测2024届数学高一上期末统考试题含解析_第1页
贵州省“阳光校园·空中黔课”阶段性检测2024届数学高一上期末统考试题含解析_第2页
贵州省“阳光校园·空中黔课”阶段性检测2024届数学高一上期末统考试题含解析_第3页
贵州省“阳光校园·空中黔课”阶段性检测2024届数学高一上期末统考试题含解析_第4页
贵州省“阳光校园·空中黔课”阶段性检测2024届数学高一上期末统考试题含解析_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

贵州省“阳光校园·空中黔课”阶段性检测2024届数学高一上期末统考试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.设且则A. B.C. D.2.使幂函数为偶函数,且在上是减函数的值为()A. B.C. D.23.函数f(x)=-4x+2x+1的值域是()A. B.C. D.4.设函数f(x)=x-lnx,则函数y=f(x)()A.在区间,(1,e)内均有零点B.在区间,(1,e)内均无零点C.在区间内有零点,在区间(1,e)内无零点D.区间内无零点,在区间(1,e)内有零点5.已知是以为圆心的圆上的动点,且,则A. B.C. D.6.已知,若不等式恒成立,则的最大值为()A.13 B.14C.15 D.167.下列函数是幂函数的是()A. B.C. D.8.设全集,,,则()A. B.C. D.9.设a>0,b>0,化简的结果是()A. B.C. D.-3a10.函数y=sin2x的图象可能是A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.命题“存在x∈R,使得x2+2x+5=0”的否定是12.已知,,则___________.13.函数在上的最小值为__________.14.已知满足任意都有成立,那么的取值范围是___________.15.函数中角的终边经过点,若时,的最小值为.(1)求函数的解析式;(2)求函数的单调递增区间.16.已知函数,若函数的最小值与函数的最小值相等,则实数的取值范围是__________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.(1)求a值以及函数的定义域;(2)求函数在区间上的最小值;(3)求函数的单调递增区间18.某次数学考试后,抽取了20名同学的成绩作为样本绘制了频率分布直方图如下:(1)求频率分布直方图中的值;(2)求20位同学成绩的平均分;(3)估计样本数据的第一四分位数和第80百分位数(保留三位有效数字)19.已知函数为奇函数(1)求实数a的值;(2)若恒成立,求实数m的取值范围20.已知函数,其中向量,,.(1)求函数的最大值;(2)求函数的单调递增区间.21.已知函数的图象经过点其中(1)求a的值;(2)若,求x的取值范围.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解题分析】由已知得,,去分母得,,所以,又因为,,所以,即,选考点:同角间的三角函数关系,两角和与差的正弦公式2、B【解题分析】根据幂函数的性质确定正确选项.【题目详解】A选项,是奇函数,不符合题意.B选项,为偶函数,且在上是减函数,符合题意.C选项,是非奇非偶函数,不符合题意.D选项,,在上递增,不符合题意.故选:B3、A【解题分析】令t=2x(t>0),则原函数化为g(t)=-t2+t+1(t>0),然后利用二次函数求值域【题目详解】令t=2x(t>0),则原函数化为g(t)=-t2+t+1(t>0),其对称轴方程为t=,∴当t=时,g(t)有最大值为∴函数f(x)=-4x+2x+1的值域是故选A【题目点拨】本题考查利用换元法及二次函数求值域,是基础题4、D【解题分析】求出导函数,由导函数的正负确定函数的单调性,再由零点存在定理得零点所在区间【题目详解】当x∈时,函数图象连续不断,且f′(x)=-=<0,所以函数f(x)在上单调递减又=+1>0,f(1)=>0,f(e)=e-1<0,所以函数f(x)有唯一的零点在区间(1,e)内故选:D5、A【解题分析】根据向量投影的几何意义得到结果即可.【题目详解】由A,B是以O为圆心的圆上的动点,且,根据向量的点积运算得到=||•||•cos,由向量的投影以及圆中垂径定理得到:||•cos即OB在AB方向上的投影,等于AB的一半,故得到=||•||•cos.故选A【题目点拨】本题考查向量的数量积公式的应用,以及向量投影的应用.平面向量数量积公式的应用主要有两种形式,一是,二是,主要应用以下几个方面:(1)求向量的夹角,(此时往往用坐标形式求解);(2)求投影,在上的投影是;(3)向量垂直则;(4)求向量的模(平方后需求).6、D【解题分析】用分离参数法转化为恒成立,只需,再利用基本不等式求出的最小值即可.【题目详解】因为,所以,所以恒成立,只需因为,所以,当且仅当时,即时取等号.所以.即的最大值为16.故选:D7、C【解题分析】由幂函数定义可直接得到结果.【题目详解】形如的函数为幂函数,则为幂函数.故选:C.8、B【解题分析】先求出集合B的补集,再求【题目详解】因为,,所以,因为,所以,故选:B9、D【解题分析】由分数指数幂的运算性质可得结果.【题目详解】因为,,所以.故选:D.10、D【解题分析】分析:先研究函数的奇偶性,再研究函数在上的符号,即可判断选择.详解:令,因为,所以为奇函数,排除选项A,B;因为时,,所以排除选项C,选D.点睛:有关函数图象的识别问题的常见题型及解题思路:(1)由函数的定义域,判断图象的左、右位置,由函数的值域,判断图象的上、下位置;(2)由函数的单调性,判断图象的变化趋势;(3)由函数的奇偶性,判断图象的对称性;(4)由函数的周期性,判断图象的循环往复二、填空题:本大题共6小题,每小题5分,共30分。11、对任何x∈R,都有x2+2x+5≠0【解题分析】因为命题“存在x∈R,使得x2+2x+5=0”是特称命题,根据特称命题的否定是全称命题,可得命题的否定为:对任何x∈R,都有x2+2x+5≠0故答案为对任何x∈R,都有x2+2x+5≠012、【解题分析】根据余弦值及角的范围,应用同角的平方关系求.【题目详解】由,,则.故答案为:.13、【解题分析】正切函数在给定定义域内单调递增,则函数的最小值为.14、【解题分析】由题意可知,分段函数在上单调递减,因此分段函数的每一段都是单调递减,且左边一段的最小值不小于右边的最大值,即可得到实数的取值范围.【题目详解】由任意都有成立,可知函数在上单调递减,又因,所以,解得.故答案为:.15、(1)(2),【解题分析】(1)根据角的终边经过点求,再由题意得周期求即可;(2)根据正弦函数的单调性求单调区间即可.【小问1详解】因为角的终边经过点,所以,若时,的最小值为可知,∴【小问2详解】令,解得故单调递增区间为:,16、【解题分析】由二次函数的知识得,当时有.令,则,.结合二次函数可得要满足题意,只需,解不等式可得所求范围【题目详解】由已知可得,所以当时,取得最小值,且令,则,要使函数的最小值与函数的最小值相等,只需满足,解得或.所以实数的取值范围是故答案为【题目点拨】本题考查二次函数最值的问题,求解此类问题时要结合二次函数图象,即抛物线的开口方向和对称轴与区间的关系进行求解,同时注意数形结合在解题中的应用,考查分析问题和解决问题的能力,属于基础题三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),;(2);(3)﹒【解题分析】(1)由f(1)=-2解得a,由1+x>0且3-x>0解得定义域;(2)化简f(x)解析式,根据x范围求出真数部分范围,即可求其最值;(3)根据复合函数单调性判断方法“同增异减”即可﹒【小问1详解】,解得;故,由,解得:,故函数的定义域是;【小问2详解】由(1)得,令得,则原函数为,由于该函数在上单调递减,∴,因此,函数在区间上的最小值是;【小问3详解】由(1)得:,令的对称轴是,故在递增,在递减,∴在递增,在递减,故函数单调递增区间为18、(1);(2);(3)第一四分位数为70.0;第80分位数为【解题分析】(1)根据频率分布直方图中的频率之和为1即可求解;(2)根据频率分布直方图中平均数的计算公式即可求解;(3)根据题意,结合百分位数的概念与计算公式,即可求解.【题目详解】(1)依图可得:,解得:(2)根据题意得,(3)由图可知,,,,,对应频率分别为:0.1,0.15,0.35,0.3,0.1,前两组频率之和恰为0.25,故第一四分位数为70.0前三组频率之和为0.6,前四组频率之和为0.9,所以第80分位数在第四组设第80分位数为,则,解得:19、(1)(2)【解题分析】(1)利用奇函数定义求出实数a的值;(2)先求解定义域,然后参变分离后求出的取值范围,进而求出实数m的取值范围.【小问1详解】由题意得:,即,解得:,当时,,不合题意,舍去,所以,经检验符合题意;【小问2详解】由,解得:,由得:或,综上:不等式中,变形为,即恒成立,令,当时,,所以,实数m的取值范围为.20、见解析【解题分析】【试题分析】(1)利用向量的运算,求出的表达式并利用辅助角公式化简,由此求得函数的最大值.(2)将(1)中求得的角代入正弦函数的递增区间,解出的取值范围,即为函数的递增区间.【试题解析】(Ⅰ),当时,有最大值.(Ⅱ)令,得函数的单调递增区间为【题目点拨】本题主要考查向量的数量积运算,考查三角函数辅助角公式,考查三角函数最大最小值的求法,考查三角函数单调性即三角函数图像与

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论