初三理化生陕西中考数学课件_第1页
初三理化生陕西中考数学课件_第2页
初三理化生陕西中考数学课件_第3页
初三理化生陕西中考数学课件_第4页
初三理化生陕西中考数学课件_第5页
已阅读5页,还剩50页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第五章静电场中的电介质5.1电介质对电场的影响QQ?(a)QQ?(b)0U(a):(b):UrUU?0?相对介电常数r?dEU00?(a):(b):EdU?rEE?0?电场变小没有自由移动的电荷,即电荷被束缚不能自由移动--束缚电荷。电介质:1?对真空,1?r?d0E?E?真空第五章静电场中的电介质5.1电介质对电场的影响QQ?(a)Q5.2电介质的极化+构成电介质的原子或分子中的电子和原子核之间的结合力很强,使电子处于一种束缚状态一.电介质有极分子和无极分子从分子带电荷的角度可以分成两部分:一部分带正电荷;一部分带负电荷。如HCl分子,由带正电荷H+带负电的Cl-组成根据分子电结构特点电介质分子分为一般地把构成电介质的最小单元统称为分子5.2电介质的极化+构成电介质的原子或分子中的电子和原子核如果分子正电荷中心和负电荷中心重合,分子对外显电中性,这样的分子叫无极分子如果分子正电荷中心和负电荷中心不重合,分子对外显电性,这样的分子叫有极分子+-+-lqp???设有极分子正电荷中心和负电荷中心之间的距离为l,分子中全部正电荷或负电荷的电量为q,有极分子电荷系统可以等效为一个电偶极子,则等效的电偶极子的电偶极矩为q-ql如果分子正电荷中心和负电荷中心重合,分子对外显电中性,这样的无外电场时:有极分子无极分子电介质不显电性对于有极分子电介质,电介质由大量有极分子组成,由于热运动使得有极分子的电偶极矩的取向是杂乱无章的,这样宏观上物质仍就不显电性当电介质处于外电场时,会发生什么呢?无极分子无外电场时:有极分子无极分子电介质不显电性对于有极分子电介质1.无极分子电介质极化位移极化+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-无外场时有外电场时(匀强电场为例)形成一个电偶极子,每个分子对应一个电偶极子。沿电场方向,相邻两电偶极子的正、负电荷靠的很近,对于均匀各向同性电介质,结果使电介质内部仍然是电中性的。但在电介质垂直电场方向的两侧面上,将分别出现正电荷和负电荷。二.电介质的极化-+-+-+-+-+-+-+-+-+-+-+-+0E?1.无极分子电介质极化位移极化+-+-+-+-+-+-+-+有外电场时(匀强电场为例)电介质垂直电场方向的两侧面上,将分别出现正电荷和负电荷,这些电荷既不能离开电介质又不能自由移动,称作“束缚电荷”,或“极化电荷”——称作电介质极化由于无极分子电介质的极化起源于分子正负电荷中心发生相对位移——称作位移极化-+-+-+-+-+-+-+-+-+-+-+-+0E有外电场时(匀强电场为例)电介质垂直电场方向的两侧面上,将分有外电场时(匀强电场为例)-+-+-+-+-+-+-+-+-+-+-+-+0E?外电场越强,每个分子的正负电荷中心之间相对位移越大,分子的电偶极矩越强。电介质表面上出现的极化电荷就越多。电介质等效为一大的电偶极子-+++--lqP???有外电场时(匀强电场为例)-+-+-+-+-+-+-+-+-2.有极分子电介质极化——取向极化对于有极分子电介质来说,正负电荷中心不重合,每个分子等效为一个电偶极子,0E?f?f?0E?f?f?2.有极分子电介质极化——取向极化对于有极分子电介质来说,正0E?有外电场时(匀强电场为例)由于分子的无规则热运动和分子间相互碰撞,每个电偶极矩排列的取向不可能与电场方向一致,只是有较多的分子的电偶极矩不同程度地接近于外电场的方向外电场越强,取向一致的程度越高。0E?有外电场时(匀强电场为例)由于分子的无规则热运动和分子0E?无外场时有外电场时(匀强电场为例)-+稳定以后,电介质内仍然是电中性的,而在电介质垂直电场方向的两侧面上出现正的和负的极化电荷,电介质仍然等效为一大的电偶极子这种极化是分子等效电偶极子的电偶极矩转向外电场方向产生的——叫做取向极化0E?无外场时有外电场时(匀强电场为例)-+稳定以后,电介质两种极化方式的宏观效果是相同的:?极化的微观机理无极分子——位移极化?内部无净余电荷的区域,仍为电中性的。因此,下面从宏观上描述电介质的极化现象时,就不分为两类电介质来讨论了。有极分子?在电介质两个相对表面上出现了异号的极化电荷在电介质内有沿电场方向的等效电偶极矩有极分子——取向极化两种极化方式的宏观效果是相同的:?极化的微观机理无极分子——V?宏观上足够小V?三.极化强度及其与极化电荷、场强的关系在电介质内任取一宏观足够小、微观足够大的体积元微观上足够大包含大量的分子,可以求统计平均值可以反应电介质任意点的性质当没有外电场时,这体积元中所有分子的电偶极矩的矢量和等于零,?iiP?ip?第i个分子的电偶极矩外电场越强,分子的电偶极矩越强。电介质表面上出现的极化电荷就越多。极化强度V?宏观上足够小V?三.极化强度及其与极化电荷、场强的关系1.极化强度——描述极化强弱的物理量V?VpPiiV???????lim0定义:因此可以定义一个物理量来描述电介质的极化程度当存在外电场时,由于电介质的极化,将不等于零,?iiP?外电场愈强,被极化的程度愈大,的值也愈大?iiP?P?记作单位体积内,分子电偶极矩的矢量和0?P?真空中1.极化强度——描述极化强弱的物理量V?VpPiiV????2.极化强度与极化电荷的关系均匀电介质极化时,其表面有极化电荷出现,极化程度愈高,极化电荷愈多。可证明:nP??????dSqd????ds介质表面qd?n?P?极化面电荷密度:则(极化电荷为正)0????若指向介质外,P?则(极化电荷为负)0????若指向介质内,P?cosP???介质的极化强度介质表面外法向的单位矢量2.极化强度与极化电荷的关系均匀电介质极化时,其表面有极化电3.极化强度与场强的关系电介质极化过程要在介质表面产生极化电荷,极化电荷也要在空间激发电场。把激发外电场的电荷称作自由电荷,并用表示自由电荷激发的电场的场强0E?用表示极化电荷激发的电场的场强E??空间任一点的合场强应是上述两类场强的矢量和E?EEE??????0-+-+-+-+-+-+-+-+-+-+-+-+0E?-+++--'E?E?3.极化强度与场强的关系电介质极化过程要在介质表面产生极化电由于在电介质中,自由电荷的电场与极化电荷的电场的方向总是相反的,所以在电介质中的合场强和外场强相比就削弱了。-+-+-+-+-+-+-+-+-+-+-+-+0E?+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-0E?---+++E??00EEEE????vvvv3.极化强度与场强的关系由于在电介质中,自由电荷的电场与极化电荷的电场的方向总是相反介质的电极化率EPe??0???1??re??无量纲的纯数e?实验证明:对于各向同性线性电介质介质内任一点的电极化强度矢量和电介质内该点处的合场强成正比Er?0)1(????3.极化强度与场强的关系EEE??????0介质的电极化率EPe??0???1??re??无量纲的纯数e求:板内的场(忽略边缘效应)解:均匀极化表面出现束缚电荷内部的场由自由电荷和束缚电荷共同产生例平行板电容器自由电荷面密度为0??????r?充满相对介电常数为的均匀各向同性线性电介质r?0??000???E0?????EE??0?0??0E????EEE???0000?????????????????????求:板内的场(忽略边缘效应)解:均匀极化表面出现束缚电EEE???0rE???00?rE?0?000???????nP??????联立Er0)1(????EPr??0)1(?????????r?E??0?0??0E???????????????EEE???0rE???00?rE?0?000???????一.电位移矢量???DEP???0单位C/m2各向同性线性介质????PEr????010rDE???rr介质方程5.3电位移矢量D的高斯定理在有电介质的电场中引入一个辅助物理量——电位移矢量记作D?0r????电介质的介电常量(电容率)E??r一.电位移矢量???DEP???0单位C/m2各向同性线性介说明:?电位移矢量D是一个辅助量,它既包含场强E又包含极化强度P,它是一个综合反映电场和介质极化两种性质的物理量。?真空中?对应电位移矢量D所画的场线称为D线PED?????0????SDSdD???二.电位移通量Er???0?0DE??rr说明:?电位移矢量D是一个辅助量,它既包含场强E又包含极????iiSqSdD0??自由电荷三.有电介质时的高斯定理的高斯定理D?在有电介质的静电场内,穿过任一闭合曲面的电位移通量等于这闭合曲面所包围自由电荷电量的代数和内容:公式:证明(略)????SiiqSdE0???在有电介质的电场中??????iiiiiiqqq0nP??????'sqdS????????iiSqSdD0??自由电荷三.有电介质时的高斯定????iiSqSdD0??说明:?穿过闭合曲面的电位移通量只决定于闭合曲面所包围的自由电荷?线发出于正的自由电荷,终止于负的自由电荷;在无自由电荷的地方线不中断D?D?00??iiq0???SSdD??00??iiq0???SSdD??00??iiq0???SSdD???同样适用于真空中的静电场,此时0DE??rr????iiSqSdD0??说明:?穿过闭合曲面的电位移通量ED???在有电介质的电场中,如果自由电荷的分布具有某种对称性,D?可根据的高斯定理求出D?EEDr????????0????PEr????01nP??????P?????q??'sqdS????ED???在有电介质的电场中,如果自由电荷的分布具有某种对称考虑距离球心为r处的电场。取球形高斯面自qSdDS?????24Drq???例计算处于均匀介质中的均匀带电球面周围的电场分布,以及球面的极化电荷面密度σ′。已知:球面的半径为R,带电量为q,球内为真空,球外介质的介电常数(电容率)为ε。解:r该问题具有球对称性。E?D?E???由电位移的高斯定理得:24qDr???q??????024rq?)(Rr?()rR?σ′0EEr'E考虑距离球心为r处的电场。取球形高斯面自qSdDS???????极化面电荷密度:0(1)rEn????外0(1)rrRE??????241Rqrr??????—与q反号??E??????024rq??)(Rr?)(Rr???????D024rq?)(Rr?()rR?外n?极化电荷电量:??qE?D24'R??qr)11(???????PEr????01nP??????qσ′???极化面电荷密度:0(1)rEn????外0(1)rrR例,内部均匀分布体电荷密度为求:介质板内、外的DEP解:r?相对介电常数为r??dx0取坐标系如图以处的面为对称面0?xSS过场点作正柱形高斯面底面积设0S0Sx?的自由电荷d一无限大各向同性均匀介质平板厚度为???DEP?平板高为x2.P0E0E'E'EEE????iiSqSdD0??例,内部均匀分布体电荷密度为求:介质板内、外的DEP解:r?2dx?0022SxDS??xD??EDr???0rx???0???rrxP???1??r??dx0S0Sx.P0E0E'E'EEE????iiSqSdD0??????PEr????012dx?0022SxDS??xD??EDr???0rx???0rDE?????EPr10?????0均匀场1?r?2dx?dSDS002??dD2??xr??dx0S0S.P????iiSqSdD0??02d???0rDE?????EPr10?????0均匀场1?r?2dx作业:P1505.25.35.4习题:作业:P1505.25.35.4习题:1.电容器:电容定义:??????Q物理意义:反映电容器容纳电荷本领大小的物理量UQC?5.4电容器和它的电容单位:法拉(F)?Q?Q?dU??????如同容器装水:1.电容器:电容定义:??????Q物理意义:反映电容器容纳求电容器电容的方法设极板带电荷Q?求极板间E=D/??求极板间U?UQC?UQC?2.三种常见的电容器求电容器电容的方法设极板带电荷Q?求极板间E=D/??求极板一对靠的很近的平行平面导体板。平行板电容器的电容C已知平行金属板的面积为S,间距为d,充满介电常数为?的电介质。0rEE??两极间任意点的电场:dErdEU??????????q?q?d???ddSUqC????两极间的电位差:C与q无关,只与结构(?Sd)有关。1)平行板电容器?Sqd?设:极板上带电荷q。0r???????一对靠的很近的平行平面导体板。平行板电容器的电容C已知平行金2)圆柱型电容器的电容C(极板间电介质的电容率ε)解(1)假定电容器带电量为Q(2)计算电容器两个极板间的电势差忽略边缘效应,柱型介质中,距中心轴为r处的电位移为(由电位移的高斯定理可得):2QDrl??rdEU?????rEd??3)电容值UQC?)(12ln2RRl?????drlrQ02??R2R1Q-Ql120ln2RRlQ???21RR?DE??lrQ??2?2)圆柱型电容器的电容C(极板间电介质的电容率ε)解(1)3)球形电容器的电容假定电容器带电+Q,-Q;极板间电场是球对称的:24rQDE?????方向:沿半径向外两个半径RA,RB同心金属球壳组成中间充满电介质?.?RARB+Q–Q极板间电位差:????BABARRRRABdrrQEdrU214??BAABRRRRQ??4)(??ABBAABRRRRUQC??????4球形电容器的电容3)球形电容器的电容假定电容器带电+Q,-Q;极板间电场是ABBARRRRC????4球形电容器的电容孤立导体的电容孤立导体和无限远处的另一导体组成一个电容器。半径为R的孤立导体球与另一同心的半径为无限大的导体球组成一个电容器。4RRCRR??????4R???ABBARRRRC????4球形电容器的电容孤立导体的电容孤(2)在电路中,一个电容器的电容量或耐压能力不够时,可采用多个电容连接:…1C2CkCkCCCC?????21C的大小耐压能力常用电容:100?F25V、470pF60V(1)衡量一个实际的电容器的性能主要指标3.电容器的串、并联1Q1Q?kQkQ?UCQ11?UCQ22?UCQkk??kQQQQ?????21UCCCk)(21?????UQC?kCCC?????21—并联电容并联U(2)在电路中,一个电容器的电容量或耐压能力不够时,可采用多电容器串联:…1C2CkC耐压强度提高kUUUU?????21电容减小kCCCC111121?????Q?QQ?QQ?Q每个电容器的带电荷量相等11CQU??22CQU?kkCQU?UQC?kUUUQ?????21121kUUUCQQQ????L12111kCCC????LU电容器串联:…1C2CkC耐压强度提高kUUUU?????21C2C当把电介质板插入时,C1电容如何变化?总电容如何变化?若是并联,结果又如何?1C2C当把电介质板插入时,C1电容如何变化?总电容如何变化5.5电容器的能量1.电容器的能量K...C?Rab电容器带电时具有能量,实验如下:将K倒向a端?电容充电再将K到向b端?灯泡发出一次强的闪光!能量从哪里来?电容放电当电容器带有电量Q、相应的电压为U时,所具有的能量W=?5.5电容器的能量1.电容器的能量K...C?R利用放电时电场力作功来计算:放电到某t时刻,极板还剩电荷q,极板的电位差:Cqu?将(–dq)的正电荷从正极板??负极板,电场力作功为:dqcq????udqdA??QQ?A???CQA221?即电容器带有电量Q时具有的能量:CQW221?221CU?QU21?可见:C也标志电容器储能的本领。K...C?Rab利用放电时电场力作功来计算:放电到某t时刻,极板还剩电荷q,这些能量存在何处CQW221?221CU?QU21??2.电场的能量以平行板电容器为例:UQC?dS??EdU?并且221CUW?2221dEdS??SdE221??VE221??VEWe221??记为:SdV?这些能量存在何处CQW221?221CU?QU21??2.电VEWe221??记为:(1)电场能量密度单位体积内所储存电场能量:eeWwV?221E??ED?????ew?DE21?ED????21(2)电场能量任何带电系统的电场中所储存的总能量为:?????dVEDdVEWe??21212?V?电场占据的整个空间体积--对任意电场成立VEWe221??记为:(1)电场能量密度单位体积内所储存例一球形电容器,内外半径分别为R1和R2,两球间充满相对介电常数为?r的电介质,求此电容器带有电量Q时所储存的电能。?R1R2+Q–Q例一球形电容器,内外半径分别为R1和R2,两球间充满相对介电例平行板空气电容器的面积为S,极板间距为d,今以厚度为2d/3的等面积铜板置于电极之间。然后对两极板充电至电压为V,断开电源后,再将铜板抽出。解:插入铜板后,101dSC??设:铜板的两个面与相邻的极板间距分别为d1、d2。33221ddddd????则:而:121)11(????CCC221CVW?充电后:能量问:外界(指非静电力)需作多少功?可以看作两个电容器C1、C2串联。202dSC??10202???????????SdSd??1021???????????Sdd?dS03??2023VdS??q?q?1d2d例平行板空气电容器的面积为S,极板间距为d,今以厚度为2d/不变q外界作功:221CVW?充电后:能量2023VdS???q抽出铜板后,??C???WWA??外20202032329VdSVdSVdS??????WW???Cq?222029VdS??VdSCV03??电容变为:dS0?q?q?不变q外界作功:221CVW?充电后:能量2023VdS??作业:P1505.105.165.175.185.225.23习题:作业:P1505.105.165.175.第五章静电场中的电介质主要内容一、概念1、极化强度矢量???iipVP??1Er?)1(0????P?2.极化电荷nPnP???????3.电位移矢量???DEP???0??DEr???04.电容QCU?dSC??1)平行板电容器第五章静电场中的电介质主要内容一、概念1、极化强度矢量???2)圆柱型电容器的电容C)(12ln2RRl???3)球形电容器的电容12214RRRRC????4).电容器的串联kCCCC?????21kCCCC111121?????5.电容器带有电量Q时具有的能量:CQW221?221CU?QU21?6电场能量?????dVEDdVEW??21212?并联2)圆柱型电容器的电容C)(12ln2RRl???3)球形二、定理????int0qSdDS??有电介质时的高斯定理二、定理????int0qSdDS??有电介质时的高斯定理习题主要类型类型一、利用有电介质时的高斯定理计算电场的分布、极化强度、极化电荷

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论