2024届浙江省9+1高中联盟长兴中学高一上数学期末综合测试模拟试题含解析_第1页
2024届浙江省9+1高中联盟长兴中学高一上数学期末综合测试模拟试题含解析_第2页
2024届浙江省9+1高中联盟长兴中学高一上数学期末综合测试模拟试题含解析_第3页
2024届浙江省9+1高中联盟长兴中学高一上数学期末综合测试模拟试题含解析_第4页
2024届浙江省9+1高中联盟长兴中学高一上数学期末综合测试模拟试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届浙江省9+1高中联盟长兴中学高一上数学期末综合测试模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若直线的倾斜角为,且经过点,则直线的方程是A. B.C. D.2.给定函数:①;②;③;④,其中在区间上单调递减函数序号是()A.①② B.②③C.③④ D.①④3.实数满足,则下列关系正确的是A. B.C. D.4.甲、乙两人破译一份电报,甲能独立破译的概率为0.3,乙能独立破译的概率为0.4,且两人是否破译成功互不影响,则两人都成功破译的概率为()A.0.5 B.0.7C.0.12 D.0.885.若是第三象限角,且,则是A.第一象限角 B.第二象限角C.第三象限角 D.第四象限角6.已知集合,,,则A. B.C. D.7.体育老师记录了班上10名同学1分钟内的跳绳次数,得到如下数据:88,94,96,98,98,99,100,101,101,116.这组数据的60%分位数是()A.98 B.99C.99.5 D.1008.给出下列四个命题:①若,则对任意的非零向量,都有②若,,则③若,,则④对任意向量都有其中正确的命题个数是()A.3 B.2C.1 D.09.对于空间两不同的直线,两不同的平面,有下列推理:(1),(2),(3)(4),(5)其中推理正确的序号为A.(1)(3)(4) B.(2)(3)(5)C.(4)(5) D.(2)(3)(4)(5)10.已知角的终边过点,则()A. B.C. D.1二、填空题:本大题共6小题,每小题5分,共30分。11.已知直线,互相平行,则__________.12.在三棱锥中,,,两两垂直,,,三棱锥的侧面积为13,则该三棱锥外接球的表面积为______.13.给出下列命题“①设表示不超过的最大整数,则;②定义:若任意,总有,就称集合为的“闭集”,已知且为的“闭集”,则这样的集合共有7个;③已知函数为奇函数,在区间上有最大值5,那么在上有最小值.其中正确的命题序号是_________.14.在棱长为2的正方体ABCD-中,E,F,G,H分别为棱,,,的中点,将该正方体挖去两个大小完全相同的四分之一圆锥,得到如图所示的几何体,现有下列四个结论:①CG//平面ADE;②该几何体的上底面的周长为;③该几何体的的体积为;④三棱锥F-ABC的外接球的表面积为其中所有正确结论的序号是____________15.的值__________.16.已知函数同时满足以下条件:①定义域为;②值域为;③.试写出一个函数解析式___________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知圆C:内有一点P(2,2),过点P作直线l交圆C于A、B两点.(1)当l经过圆心C时,求直线l的方程;(2)当直线l的倾斜角为45º时,求弦AB的长.18.已知.(Ⅰ)若,求的值;(Ⅱ)若为第三象限角,且,求的值.19.已知函数(1)判断函数在上的单调性,并用定义法证明你的结论;(2)若,求函数的最大值和最小值.20.设函数(1)写出函数的最小正周期及单调递减区间;(2)当时,函数的最大值与最小值的和为,求不等式的解集21.北京冬奥会计划于2022年2月4日开幕,随着冬奥会的临近,中国冰雪运动也快速发展,民众参与冰雪运动的热情不断高涨盛会的举行,不仅带动冰雪活动,更推动冰雪产业快速发展某冰雪产业器材厂商,生产某种产品的年固定成本为200万元,每生产千件,需另投入成本为(万元),其中与之间的关系为:通过市场分析,当每千件件产品售价为40万元时,该厂年内生产的商品能全部销售完若将产品单价定为400元(1)写出年利润(万元)关于年产量(千件)的函数解析式(2)年产量为多少千件时,该厂在这一商品的生产中所获利润最大?

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解题分析】直线l的斜率等于tan45°=1,由点斜式求得直线l的方程为y-0=,即故选:B2、B【解题分析】①,为幂函数,且的指数,在上为增函数;②,,为对数型函数,且底数,在上为减函数;③,在上为减函数,④为指数型函数,底数在上为增函数,可得解.【题目详解】①,为幂函数,且的指数,在上为增函数,故①不可选;②,,为对数型函数,且底数,在上为减函数,故②可选;③,在上为减函数,在上为增函数,故③可选;④为指数型函数,底数在上为增函数,故④不可选;综上所述,可选的序号为②③,故选B.【题目点拨】本题考查基本初等函数的单调性,熟悉基本初等函数的解析式、图像和性质是解决此类问题的关键,属于基础题.3、A【解题分析】根据指数和对数的运算公式得到【题目详解】=故A正确.故B不正确;故C,D不正确.故答案为A.【题目点拨】这个题目考查了指数和对数的公式的互化,以及换底公式的应用,较为简单.4、C【解题分析】根据相互独立事件的概率乘法公式,即可求解.【题目详解】由题意,甲、乙分别能独立破译的概率为和,且两人是否破译成功互不影响,则这份电报两人都成功破译的概率为.C.5、D【解题分析】根据是第三象限角,写出角的集合,进一步得到的集合,再根据得到答案【题目详解】是第三象限角,,则,即是第二象限或者第四象限角,,是第四象限角故选:D6、D【解题分析】本题选择D选项.7、C【解题分析】根据分位数的定义即可求得答案.【题目详解】这组数据的60%分位数是.8、D【解题分析】对于①,当两向量垂直时,才有;对于②,当两向量垂直时,有,但不一定成立;对于③,当,时,可以是任意向量;对于④,当向量都为零向量时,【题目详解】解:对于①,因为,,所以当两向量垂直时,才有,所以①错误;对于②,因为,,所以或,所以②错误;对于③,因为,所以,所以可以是任意向量,不一定是相等向量,所以③错误;对于④,当时,,所以④错误,故选:D9、C【解题分析】因为时,可以在平面内,所以(1)不正确;因为时,可以在平面内,所以(2)不正确;因为时可以在平面内,所以(3)不正确;根据线面垂直的性质定理可得,(4)正确;根据线面平行的性质及线面垂直的性质可得(5)正确,推理正确的序号为(4)(5),故选C.【方法点晴】本题主要考查线面平行的判定与性质、面面垂直的性质及线面垂直的判定与性质,属于难题.空间直线、平面平行或垂直等位置关系命题的真假判断,常采用画图(尤其是画长方体)、现实实物判断法(如墙角、桌面等)、排除筛选法等;另外,若原命题不太容易判断真假,可以考虑它的逆否命题,判断它的逆否命题真假,原命题与逆否命题等价.10、B【解题分析】根据三角函数的定义求出,再根据二倍角余弦公式计算可得;【题目详解】解:∵角的终边过点,所以,∴,故故选:B二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】由两直线平行的充要条件可得:,即:,解得:,当时,直线为:,直线为:,两直线重合,不合题意,当时,直线为:,直线为:,两直线不重合,综上可得:.12、【解题分析】根据侧面积计算得到,再计算半径为,代入表面积公式得到答案.【题目详解】三棱锥的侧面积为,所以故该三棱锥外接球的半径为:,球的表面积为.故答案为:【题目点拨】本题考查了三棱锥的外接球问题,意在考查学生的空间想象能力和计算能力.13、①②【解题分析】对于①,如果,则,也就是,所以,进一步计算可以得到该和为,故①正确;对于②,我们把分成四组:,由题设可知不是“闭集”中的元素,其余三组元素中的每组元素必定在“闭集”中同时出现或同时不出现,故所求的“闭集”的个数为,故②正确;对于③,因为在上的最大值为,故在上的最大值为,所以在上的最小值为,在上的最小值为,故③错.综上,填①②点睛:(1)根据可以得到,因此,这样的共有,它们的和为,依据这个规律可以写出和并计算该和(2)根据闭集的要求,中每组元素都是同时出现在闭集中或者同时不出现在闭集中,故可以根据子集的个数公式来计算(3)注意把非奇非偶函数转化为奇函数或偶函数来讨论14、①③④【解题分析】由面面平行的性质判断①;由题设知两段圆弧的长度之和为,即可得上底周长判断②;利用正方体体积及圆锥体积的求法求几何体体积判断③;首先确定外接球球心位置,进而求出球体的半径,即可得F-ABC的外接球的表面积判断④.【题目详解】因为面面,面,所以CG//平面,即CG//平面ADE,①正确;依题意知,弧EF与弧HG均为圆弧,且这两段圆弧的长度之和为,所以该几何体的上底面的周长为,该几何体的体积为8-,②错误,③正确;设M,N分别为下底面、上底面的中心,则三棱锥F-ABC的外接球的球心O在MN上设OM=h,则,解得,从而球O的表面积为,④正确.故答案为:①③④15、1【解题分析】由,结合辅助角公式可知原式为,结合诱导公式以及二倍角公式可求值.【题目详解】解:.故答案为:1.【题目点拨】本题考查了同角三角函数的基本关系,考查了二倍角公式,考查了辅助角公式,考查了诱导公式.本题的难点是熟练运用公式对所求式子进行变形整理.16、或(答案不唯一)【解题分析】由条件知,函数是定义在R上的偶函数且值域为,可以写出若干符合条件的函数.【题目详解】函数定义域为R,值域为且为偶函数,满足题意的函数解析式可以为:或【题目点拨】本题主要考查了函数的定义域、值域、奇偶性以,属于中档题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)2x-y-2=0;(2)【解题分析】(1)由圆的方程可求出圆心,再根据直线过点P、C,由斜率公式求出直线的斜率,由点斜式即可写出直线l的方程;(2)根据点斜式写出直线l的方程,再根据弦长公式即可求出【题目详解】(1)已知圆C:的圆心为C(1,0),因直线过点P、C,所以直线l的斜率为,直线l的方程为y=2(x-1),即2x-y-2=0(2)当直线l的倾斜角为45º时,斜率为1,直线l的方程为y-2=x-2,即x-y=0.所以圆心C到直线l的距离为因为圆的半径为3,所以,弦AB的长【题目点拨】本题主要考查直线方程的求法以及圆的弦长公式的应用,意在考查学生的数学运算能力,属于基础题18、(Ⅰ);(Ⅱ).【解题分析】(Ⅰ)由诱导公式化简得,代入即可得解;(Ⅱ)由诱导公式可得,再由同角三角函数的平方关系可得,代入即可得解.【题目详解】(Ⅰ)由于,又,所以.(Ⅱ)因为,所以.又因为第三象限角,所以,所以.19、(1)减函数,证明见解析(2),【解题分析】(1)根据定义法证明函数单调性即可求解;(2)根据(1)中的单调性求解最值即可.【小问1详解】任取,,且则-因为,所以,所以,即,所以在区间上是减函数【小问2详解】因为函数在区间上是减函数,所以,.20、(1)最小正周期为;递减区间为:;(2)【解题分析】(1)化函数为正弦型函数,求出它的最小正周期和单调递减区间;(2)根据时求得的最大值和最小值,由此求得的值,再求不等式的解集【题目详解】(1),∴,令,∴,∴函数的递减区间为:(2)由得:,∴,,∴,∴,∴,又,∴不等式的解集为【题目点拨】方

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论