上海华东师大三附中2024届数学高一上期末达标检测试题含解析_第1页
上海华东师大三附中2024届数学高一上期末达标检测试题含解析_第2页
上海华东师大三附中2024届数学高一上期末达标检测试题含解析_第3页
上海华东师大三附中2024届数学高一上期末达标检测试题含解析_第4页
上海华东师大三附中2024届数学高一上期末达标检测试题含解析_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

上海华东师大三附中2024届数学高一上期末达标检测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.函数的最小正周期为,若其图象向左平移个单位后得到的函数为奇函数,则函数的图象()A.关于点对称 B.关于点对称C.关于直线对称 D.关于直线对称2.命题“对,都有”的否定为()A.对,都有 B.对,都有C.,使得 D.,使得3.已知,则的值为()A. B.C. D.4.两圆和的位置关系是A.内切 B.外离C.外切 D.相交5.若,则()A. B.aC.2a D.4a6.设函数与的图象的交点为,则所在的区间为()A B.C. D.7.若,,则()A. B.C. D.8.若且,则下列不等式中一定成立的是A. B.C. D.9.设函数若任意给定的,都存在唯一的非零实数满足,则正实数的取值范围为()A. B.C. D.10.平行于同一平面的两条直线的位置关系是A.平行 B.相交或异面C.平行或相交 D.平行、相交或异面二、填空题:本大题共6小题,每小题5分,共30分。11.设a>0且a≠1,函数fx12.已知,,则_____;_____13.已知函数是奇函数,当时,,若,则m的值为______.14.已知幂函数的图象过点______15.已知函数()的部分图象如图所示,则的解析式是___________.16.若函数在区间上为增函数,则实数的取值范围为______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.某企业生产A,B两种产品,根据市场调查与预测,A产品的利润与投资成正比,其关系如图①;B产品的利润与投资的算术平方根成正比,其关系如图②.(注:利润和投资单位:万元)(1)分别将A,B两种产品的利润表示为投资的函数关系式;(2)已知该企业已筹集到18万元资金,并将全部投入A,B两种产品的生产,怎样分配这18万元投资,才能使该企业获得最大利润?其最大利润约为多少万元?18.已知集合,(1)若,求,;(2)若,求实数的取值范围19.已知函数(1)求的值域;(2)当时,关于的不等式有解,求实数的取值范围20.将函数(且)的图象向左平移1个单位,再向上平移2个单位,得到函数的图象,(1)求函数的解析式;(2)设函数,若对一切恒成立,求实数的取值范围;(3)若函数在区间上有且仅有一个零点,求实数的取值范围.21.某家庭进行理财投资,根据长期收益率市场预测,投资债券等稳健型产品的收益与投资额成正比,投资股票等风险型产品的收益与投资额的算术平方根成正比,已知投资1万元时两类产品的收益分别为万元和万元(如图).(1)分别写出两种产品的收益和投资的函数关系;(2)该家庭现有20万元资金,全部用于理财投资,问:怎样分配资金能使投资获得最大的收益,其最大收益为多少万元?

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解题分析】求得,求出变换后的函数解析式,根据已知条件求出的值,然后利用代入检验法可判断各选项的正误.【题目详解】由题意可得,则,将函数的图象向左平移个单位后,得到函数的图象,由于函数为奇函数,则,所以,,,则,故,因为,,故函数的图象关于直线对称.故选:C.2、D【解题分析】全称命题的否定是特称命题,把任意改为存在,把结论否定.【题目详解】,都有的否定是,使得.故选:D3、B【解题分析】在所求分式的分子和分母中同时除以,结合两角差的正切公式可求得结果.【题目详解】.故选:B.4、D【解题分析】根据两圆方程求解出圆心和半径,从而得到圆心距;根据得到两圆相交.【题目详解】由题意可得两圆方程为:和则两圆圆心分别为:和;半径分别为:和则圆心距:则两圆相交本题正确选项:【题目点拨】本题考查圆与圆的位置关系,关键是判断出圆心距和两圆半径之间的关系,属于基础题.5、A【解题分析】利用对数的运算可求解.【题目详解】,故选:A6、C【解题分析】令,则,故的零点在内,因此两函数图象交点在内,故选C.【方法点睛】本题主要考查函数图象的交点与函数零点的关系、零点存在定理的应用,属于中档题.零点存在性定理的条件:(1)利用定理要求函数在区间上是连续不断的曲线;(2)要求;(3)要想判断零点个数还必须结合函数的图象与性质(如单调性、奇偶性).7、A【解题分析】由不等式的性质判断A、B、D的正误,应用特殊值法的情况判断C的正误.【题目详解】由,则,A正确;,B错误;,D错误.当时,,C错误;故选:A.8、D【解题分析】利用不等式的性质逐个检验即可得到答案.【题目详解】A,a>b且c∈R,当c小于等于0时不等式不成立,故错误;Ba,b,c∈R,且a>b,可得a﹣b>0,当c=0时不等式不成立,故错误;,C,举反例,a=2,b=-1满足a>b,但不满足,故错误;D,将不等式化简即可得到a>b,成立,故选D.【题目点拨】本题主要考查不等式的性质以及排除法的应用,属于简单题.用特例代替题设所给的一般性条件,得出特殊结论,然后对各个选项进行检验,从而做出正确的判断,这种方法叫做特殊法.若结果为定值,则可采用此法.特殊法是“小题小做”的重要策略.常用的特例有特殊数值、特殊数列、特殊函数、特殊图形、特殊角、特殊位置等9、A【解题分析】结合函数的图象及值域分析,当时,存在唯一的非零实数满足,然后利用一元二次不等式的性质即可得结论.【题目详解】解:因为,所以由函数的图象可知其值域为,又时,值域为;时,值域为,所以的值域为时有两个解,令,则,若存在唯一的非零实数满足,则当时,,与一一对应,要使也一一对应,则,,任意,即,因为,所以不等式等价于,即,因,所以,所以,又,所以正实数的取值范围为.故选:A.10、D【解题分析】根据线面平行的位置关系及线线位置关系的分类及定义,可由已知两直线平行于同一平面,得到两直线的位置关系【题目详解】解:若,且则与可能平行,也可能相交,也有可能异面故平行于同一个平面的两条直线的位置关系是平行或相交或异面故选【题目点拨】本题考查的知识点是空间线线关系及线面关系,熟练掌握空间线面平行的位置关系及线线关系的分类及定义是详解本题的关键,属于基础题二、填空题:本大题共6小题,每小题5分,共30分。11、1,0【解题分析】令指数为0即可求得函数图象所过的定点.【题目详解】由题意,令x-1=0⇒x=1,y=1-1=0,则函数的图象过定点(1,0).故答案为:(1,0).12、①.②.【解题分析】利用指数式与对数的互化以及对数的运算性质化简可得结果.【题目详解】因为,则,故.故答案为:;213、【解题分析】由奇函数可得,则可得,解出即可【题目详解】因为是奇函数,,所以,即,解得故答案为:【题目点拨】本题考查利用奇偶性求值,考查已知函数值求参数14、3【解题分析】利用幂函数的定义先求出其解析式,进而得出答案【题目详解】设幂函数为常数,幂函数的图象过点,,解得故答案为3【题目点拨】本题考查幂函数的定义,正确理解幂函数的定义是解题的关键15、【解题分析】由图可知,,得,从而,所以,然后将代入,得,又,得,因此,,注意最后确定的值时,一定要代入,而不是,否则会产生增根.考点:三角函数的图象与性质.16、【解题分析】由复合函数的同增异减性质判断得在上单调递减,再结合对称轴和区间边界值建立不等式即可求解.【题目详解】由复合函数的同增异减性质可得,在上严格单调递减,二次函数开口向上,对称轴为所以,即故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)当A,B两种产品分别投入2万元、16万元时,可使该企业获得最大利润,约为8.5万元.【解题分析】⑴设出函数解析式,根据图象,即可求得答案;⑵确定总利润函数,换元,利用配方法可求最值;解析:(1)根据题意可设,则f(x)=0.25x(x≥0),g(x)=2(x≥0).(2)设B产品投入x万元,A产品投入(18-x)万元,该企业可获总利润为y万元则y=(18-x)+2,0≤x≤18令=t,t∈[0,3],则y=(-t2+8t+18)=-(t-4)2+.所以当t=4时,ymax==8.5,此时x=16,18-x=2.所以当A,B两种产品分别投入2万元、16万元时,可使该企业获得最大利润,约8.5万元.18、(1),(2)【解题分析】(1)根据集合的基本运算即可求解(2)根据A∩B=B,得到B⊆A,再建立条件关系即可求实数a的取值范围【小问1详解】若a=2,A={x|0<x<2},∴={x|x≤0或x≥2},∵B={x|1<x<3},∴A∪B={x|0<x<3},∴={x|2≤x<3}【小问2详解】∵A∩B=B,∴B⊆A,∴a≥3∴实数a的取值范围为[3,+∞)19、(1)(2)【解题分析】(1)由.令,换元后再配方可得答案;(2)由得,令,转化为时有解的问题可得答案【小问1详解】,令,则,所以的值域为【小问2详解】,即,令,则,即在上有解,当时,m无解;当时,可得,因为,当且仅当时,等号成立,所以.综上,实数m的取值范围为20、(1)(2)(3)【解题分析】(1)由图象的平移特点可得所求函数的解析式;(2)求得的解析式,可得对一切恒成立,再由二次函数的性质可得所求范围;(3)将化简为,由题意可得只需在区间,,上有唯一解,利用图象,数形结合求得答案.【小问1详解】将函数且的图象向左平移1个单位,得到的图象,再向上平移2个单位,得到函数的图象,即:;【小问2详解】函数,,若对一切恒成立,则对一切恒成立,由在递增,可得,所以,即的取值范围是,;【小问3详解】关于的方程且,故函数在区间上有且仅有一个零点,等价于在区间上有唯一解,作出函数且的图象,如图示:当时,方程的解有且只有1个,故实数p的取值范围是.21、(1)投资债券,投资股

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论