




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届浙江省各地数学高一上期末联考模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知直线ax+by+c=0的图象如图,则()A.若c>0,则a>0,b>0B.若c>0,则a<0,b>0C.若c<0,则a>0,b<0D.若c<0,则a>0,b>02.已知向量,,则与的夹角为A. B.C. D.3.下列函数中,与函数的定义域与值域相同的是()A.y=sinx B.C. D.4.已知集合,,若,则实数的值为()A. B.C. D.5.下列说法正确的是()A.若,则B.若,则C.若,则D.若,则6.已知函数,则()A.-1 B.2C.1 D.57.铁路总公司关于乘车行李规定如下:乘坐动车组列车携带品的外部尺寸长、宽、高之和不超过.设携带品外部尺寸长、宽、高分别为(单位:),这个规定用数学关系式表示为()A. B.C. D.8.如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的表面积为A. B.C.90 D.819.设,,,则的大小关系为()A. B.C. D.10.函数的大致图象是A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数是定义在上的奇函数,当时,,则当时____12.设集合,对其子集引进“势”的概念;①空集的“势”最小;②非空子集的元素越多,其“势”越大;③若两个子集的元素个数相同,则子集中最大的元素越大,子集的“势”就越大.最大的元素相同,则第二大的元素越大,子集的“势”就越大,以此类推.若将全部的子集按“势”从小到大顺序排列,则排在第位的子集是_________.13.已知函数同时满足以下条件:①定义域为;②值域为;③.试写出一个函数解析式___________.14.已知指数函数的解析式为,则函数的零点为_________15.在内,使成立的x的取值范围是____________16.已知为的外心,,,,且;当时,______;当时,_______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知圆经过(2,5),(﹣2,1)两点,并且圆心在直线yx上.(1)求圆的标准方程;(2)求圆上的点到直线3x﹣4y+23=0的最小距离.18.(1)已知,,求的值.(2)证明:.19.主动降噪耳机工作的原理是:先通过微型麦克风采集周国的噪声,然后降噪芯片生成与噪声振幅相同、相位相反的声波来抵消噪声(如图所示).已知某噪声的声波曲线,其中的振幅为2,且经过点(1,-2)(1)求该噪声声波曲线的解析式以及降噪芯片生成的降噪声波曲线的解析式;(2)证明:为定值20.在新型冠状病毒感染的肺炎治疗过程中,需要某医药公司生产的某种药品.此药品的年固定成本为200万元,每生产x千件需另投入成本,当年产量不足60千件时,(万元),当年产量不小于60千件时,(万元).每千件商品售价为50万元,在疫情期间,该公司生产的药品能全部售完(1)写出利润(万元)关于年产量x(千件)的函数解析式;(2)该公司决定将此药品所获利润的10%用来捐赠防疫物资,当年产量为多少千件时,在这一药品的生产中所获利润最大?此时可捐赠多少万元的物资款?21.已知函数是定义在R上的奇函数.(1)求函数的解析式,判断并证明函数的单调性;(2)若存在实数,使成立,求实数的取值范围.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解题分析】由ax+by+c=0,得斜率k=-,直线在x,y轴上的截距分别为-,-.如图,k<0,即-<0,所以ab>0,因为->0,->0,所以ac<0,bc<0.若c<0,则a>0,b>0;若c>0,则a<0,b<0;故选D.2、C【解题分析】利用夹角公式进行计算【题目详解】由条件可知,,,所以,故与的夹角为故选【题目点拨】本题考查了运用平面向量数量积运算求解向量夹角问题,熟记公式准确计算是关键,属于基础题3、D【解题分析】由函数的定义域为,值域依次对各选项判断即可【题目详解】解:由函数的定义域为,值域,对于定义域为,值域,,错误;对于的定义域为,值域,错误;对于的定义域为,,值域,,错误;对于的定义域为,值域,正确,故选:4、B【解题分析】根据集合,,可得,从而可得.【题目详解】因为,,所以,所以.故选:B5、C【解题分析】运用作差法可以判断C,然后运用代特殊值法可以判断A、B、D,进而得到答案.【题目详解】对A,令,则.A错误;对B,令,则.B错误;对C,因为,而,则,所以,即.C正确;对D,令,则.D不正确.故选:C.6、A【解题分析】求分段函数的函数值,将自变量代入相应的函数解析式可得结果.【题目详解】∵在这个范围之内,∴故选:A.【题目点拨】本题考查分段函数求函数值的问题,考查运算求解能力,是简单题.7、C【解题分析】根据长、宽、高的和不超过可直接得到关系式.【题目详解】长、宽、高之和不超过,.故选:.8、B【解题分析】解:由已知中的三视图可得:该几何体是一个以俯视图为底面的斜四棱柱,其底面面积为:3×6=18,前后侧面的面积为:3×6×2=36,左右侧面的面积为:,故棱柱的表面积为:故选B点睛:本题考查知识点是由三视图,求体积和表面积,根据已知的三视图,判断几何体的形状是解答的关键,由三视图判断空间几何体(包括多面体、旋转体和组合体)的结构特征是高考中的热点问题.9、D【解题分析】利用指数函数和对数函数的单调性即可判断.【题目详解】,,,,.故选:D.10、D【解题分析】关于对称,且时,,故选D二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】设则得到,再利用奇函数的性质得到答案.【题目详解】设则,函数是定义在上的奇函数故答案为【题目点拨】本题考查了利用函数的奇偶性计算函数表达式,属于常考题型.12、【解题分析】根据题意依次按“势”从小到大顺序排列,得到答案.【题目详解】根据题意,将全部的子集按“势”从小到大顺序排列为:,,,,,,,.故排在第6的子集为.故答案为:13、或(答案不唯一)【解题分析】由条件知,函数是定义在R上的偶函数且值域为,可以写出若干符合条件的函数.【题目详解】函数定义域为R,值域为且为偶函数,满足题意的函数解析式可以为:或【题目点拨】本题主要考查了函数的定义域、值域、奇偶性以,属于中档题.14、1【解题分析】解方程可得【题目详解】由得,故答案为:115、【解题分析】根据题意在同一个坐标系中画出在内的函数图像,由图求出不等式的解集【题目详解】解:在同一个坐标系中画出在内的函数图像,如图所示,则使成立的x的取值范围是,故答案为:16、(1).(2).【解题分析】(1)由可得出为的中点,可知为外接圆的直径,利用锐角三角函数的定义可求出;(2)推导出外心的数量积性质,,由题意得出关于、和的方程组,求出的值,再利用向量夹角的余弦公式可求出的值.【题目详解】当时,由可得,,所以,为外接圆的直径,则,此时;如下图所示:取的中点,连接,则,所,,同理可得.所以,,整理得,解得,,,因此,.故答案为:;.【题目点拨】本题考查三角的外心的向量数量积性质的应用,解题的关键就是推导出,,并以此建立方程组求解,计算量大,属于难题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(x﹣2)2+(y﹣1)2=16(2)1【解题分析】(1)先求出圆心的坐标和圆的半径,即得圆的标准方程;(2)求出圆心到直线3x﹣4y+23=0的距离即得解.【题目详解】(1)A(2,5),B(﹣2,1)中点为(0,3),经过A(2,5),B(﹣2,1)的直线的斜率为,所以线段AB中垂线方程为,联立直线方程y解得圆心坐标为(2,1),所以圆的半径.所以圆的标准方程为(x﹣2)2+(y﹣1)2=16.(2)圆的圆心为(2,1),半径r=4.圆心到直线3x﹣4y+23=0的距离d.则圆上的点到直线3x﹣4y+23=0的最小距离为d﹣r=1.【题目点拨】本题主要考查圆的标准方程的求法和圆上的点到直线的距离的最值的求法,意在考查学生对这些知识的理解掌握水平.18、(1);(2)证明见解析.【解题分析】(1)对已知式子分别平方相加即可求得.(2)分别求解左边和右边,即可证明.【题目详解】(1)由,,分别平方得:,。两式相加可得:,整理化简得:.(2)证明:左边.右边,所以左边=右边,即原不等式成立.19、(1);(2)证明见解析.【解题分析】(1)首先根据振幅为2求出A,将点(1,-2)代入解析式即可解得;(2)由(1),结合诱导公式和两角和差的余弦公式化简即可证明.【题目详解】(1)∵振幅为2,A>0,∴A=2,,将点(1,-2)代入得:,∵,∴,∴,∴,易知与关于x轴对称,所以.(2)由(1).即定值为0.20、(1);(2)当年产量为80千件时所获利润最大为640万元,此时可捐64万元物资款.【解题分析】(1)分、两种情况讨论,结合利润销售收入成本,可得出年利润(万元)关于年产量(千件)的函数解析式;(2)利用二次函数的基本性质、基本不等式可求得函数的最大值及其对应的值,由此可得出结论.【小问1详解】由题意可知,当时,,当时,,故有;【小问2详解】当时,,即时,,当时,有,当且仅当时,,因为,所以时,,答:当产量为80千件时所获利润最大为640万元,此时可捐64万元物资款.21、(1),函数在上单调递减,证明见解析(2)【解题分析】(1)由为奇函数且定义域为R,则,即可求得,进而得到解析式;设,代入解析式中证得即可;(2)由奇函数,可将问题转化为,再利用单调性可得存在实数,使成立,即为存在实数,使成立
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 黑龙江省哈尔滨市南岗区哈尔滨三中2025年高考化学三模试卷含解析
- 2025届阳泉市重点中学高三六校第一次联考化学试卷含解析
- 四川省广元天立国际学校2025年高考化学一模试卷含解析
- 2025届贵州省黔东南州剑河县第四中学高考考前模拟化学试题含解析
- 凉菜间操作规范
- 护理年度培训总结
- 人教版四年级下册数学期末测试基础达标卷(含答案)
- 丰城中学2024-2025学年下学期高二创新班第一次段考化学试卷
- 护理月度工作总结
- 妇产科腹腔镜护理常规
- 胰胆线阵超声内镜影像病理图谱
- 中医内科学总论-课件
- 免疫学防治(免疫学检验课件)
- 消防水泵房操作规程
- 腹腔双套管冲洗操作
- 人教五年级语文上册毛主席在花山课件
- 《微型消防站建设标准》
- 中国少年先锋队入队申请书 带拼音
- 环氧粉末涂料爆炸危险性评估
- 拉斐尔课件完整版
- 机加工日语词汇
评论
0/150
提交评论