版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022年广西壮族自治区河池市中学高二数学理联考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.袋中装有红球3个、白球2个、黑球1个,从中任取2个,则互斥而不对立的两个事件是(
)A.至少有一个白球;至少有一个红球
B.至少有一个白球;红、黑球各一个C.恰有一个白球;一个白球一个黑球
D.至少有一个白球;都是白球参考答案:B袋中装有红球3个、白球2个、黑球1个,从中任取2个,
在A中,至少有一个白球和至少有一个红球两个事件能同时发生,不是互斥事件,故A不成立;
在B中,至少有一个白球和红、黑球各一个两个事件不能同时发生但能同时不发生,是互斥而不对立的两个事件,故B成立;
在C中,恰有一个白球和一个白球一个黑球两个事件能同时发生,不是互斥事件,故C不成立;
在D中,至少有一个白球和都是白球两个事件能同时发生,不是互斥事件,故D不成立.
故选B.
2.公元前3世纪,古希腊欧几里得在《几何原本》里提出:“球的体积(V)与它的直径(d)的立方成正比”,此即V=kd3,与此类似,我们可以得到:(1)正四面体(所有棱长都相等的四面体)的体积(V)与它的棱长(a)的立方成正比,即V=ma3;(2)正方体的体积(V)与它的棱长(a)的立方成正比,即V=na3;(3)正八面体(所有棱长都相等的八面体)的体积(V)与它的棱长(a)的立方成正比,即V=ta3;那么m:n:t=()A.1:6:4 B.:12:16 C.:1: D.:6:4参考答案:A【考点】F3:类比推理.【分析】求出正四面体、正方体、正八面体的体积,类比推力即可得出.【解答】解:由题意,正四面体的体积V==a3;正方体的体积V=a3;正八面体的体积V=2×=a3,∴m:n:t=1:6:4,故选A.【点评】本题考查了正四面体、正方体、正八面体的体积计算公式、类比推力,属于中档题.3.若函数在区间内可导,且则
的值为()A
B
C
D
参考答案:B略4.已知、是两个不同的平面,直线,直线.命题无公共点;命题.则p是q的
(
)
A、充分不必要条件
B、必要不充分条件
C、充要条件
D、既不充分又不必要条件参考答案:B略5.已知抛物线y2=2px(p>0)的准线与曲线x2+y2﹣8x﹣9=0相切,则p的值为()A.2 B.1 C. D.参考答案:A【考点】抛物线的简单性质.【分析】求得圆心及半径,由题意可知:抛物线y2=2px(p>0)的准线与曲线x2+y2﹣8x﹣9=0相切,丨4+丨=5,解得:p=2.【解答】解:圆x2+y2﹣8x﹣9=0转化为(x﹣4)2+y2=25,圆心(4,0),半径为5,抛物线y2=2px(p>0)的准线为x=﹣,∵抛物线y2=2px(p>0)的准线与曲线x2+y2﹣8x﹣9=0相切,∴丨4+丨=5,解得:p=2,∴p的值为2,故选A.6.下列表述正确的是()①归纳推理是由部分到整体的推理;②归纳推理是由一般到一般的推理;③演绎推理是由一般到特殊的推理;④类比推理是由特殊到一般的推理;⑤类比推理是由特殊到特殊的推理.A.①②③ B.②③④ C.①③⑤ D.②④⑤参考答案:C【考点】F3:类比推理;F1:归纳推理.【分析】本题解决的关键是了解归纳推理、演绎推理和类比推理的概念及它们间的区别与联系.利用归纳推理就是从个别性知识推出一般性结论的推理,从而可对①②进行判断;由类比推理是由特殊到特殊的推理,从而可对④⑤进行判断;对于③直接据演绎推理即得.【解答】解:所谓归纳推理,就是从个别性知识推出一般性结论的推理.故①对②错;又所谓演绎推理是由一般到特殊的推理.故③对;类比推理是根据两个或两类对象有部分属性相同,从而推出它们的其他属性也相同的推理.故④错⑤对.故选:C.7.设为抛物线上一点,为抛物线的焦点,若以为圆心,为半径的圆和抛物线的准线相交,则的取值范围是(
)A.
B.
C.
D.参考答案:A8.如图描述的程序是用来(
)A.计算2×10的值
B.计算29的值C.计算210的值
D.计算1×2×3×…×10的值参考答案:C9.黑白两种颜色的正六边形地面砖如图的规律拼成若干个图案,则第2011个图案中,白色地面砖的块数是(
)
A.8046
B.8042
C.4024
D.6033
参考答案:A略10.在区间[0,4]上任取一个实数x,则x>1的概率是()A.0.25 B.0.5 C.0.6 D.0.75参考答案:D【考点】几何概型.【分析】根据几何概型计算公式,用符合题意的基本事件对应的区间长度除以所有基本事件对应的区间长度,可得答案.【解答】解:数集(1,4]的长度为3,数集[0,4]的长度为4,∴在区间[0,4]上任取一个实数x,则x>1的概率为:=0.7,故选:D.二、填空题:本大题共7小题,每小题4分,共28分11.如图,在三棱柱中,分别是的中点,设三棱锥的体积为,三棱柱的体积为,则_____.参考答案:12.设ABCD-A1B1C1D1是棱长为1的正方体,则上底面ABCD的内切圆上的点P与过顶点A,B,C1,D1的圆上的点Q之间的最小距离是---------------------___________.参考答案:解析:设点O是正方体的中心,则易得OQ=,OP=,则由三角不等式PQ≥OQ-OP=.等号当且仅当三点O、P、Q共线时成立.又显然当点P为线段AB中点时,设射线OP与ABC1D1的外接圆的交点为Q时满足要求13.复数的值是
.参考答案:-16略14.已知曲线C的极坐标方程为ρ=﹣2sinθ,则其直角坐标方程为.参考答案:x2+(y+1)2=1【考点】简单曲线的极坐标方程.【分析】先将极坐标方程ρ=2sinθ两边同乘以ρ后,即可化成直角坐标方程.【解答】解:将极坐标方程ρ=﹣2sinθ两边同乘ρ,化为:ρ2=﹣2ρsinθ,化成直角坐标方程为:x2+y2+2y=0,即x2+(y+1)2=1.故答案为:x2+(y+1)2=1.15.过点作直线交双曲线于、两点,且点恰为线段中点,则直线的方程为
______
.参考答案:x-y-2=016.已知F为双曲线C:﹣=1的左焦点,A(1,4),P是C右支上一点,当△APF周长最小时,点F到直线AP的距离为.参考答案:【考点】双曲线的简单性质.【分析】设双曲线的右焦点为F′(4,0),由题意,A,P,F′共线时,△APF周长最小,求出直线AP的方程,即可求出点F到直线AP的距离.【解答】解:设双曲线的右焦点为F′(4,0),由题意,A,P,F′共线时,△APF周长最小,直线AP的方程为y=(x﹣4),即4x+3y﹣16=0,∴点F到直线AP的距离为=,故答案为:【点评】本题考查双曲线的方程与性质,考查点到直线的距离公式,属于中档题.17.一个球与一个正三棱柱的三个侧面和两个底面都相切,已知这个球的体积是p,则这个三棱柱的体积为
参考答案:48略三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.在长方体ABCD-A1B1C1D1中,底面ABCD是边长为2的正方形,,E是AB的中点,F是BB1的中点.(1)求证:EF∥平面A1DC1;(2)求点A到平面A1DC1的距离.参考答案:(1)见解析(2)【分析】(1)通过证明得到平面.(2)利用等体积法计算,得到答案.【详解】(1)证明:连接,∵分别为的中点,∴∵长方体中,,,∴四边形是平行四边形,∴,∴∵平面,平面,∴平面(2)解:由底面是边长为2的正方形,知长方体中,,,由,知设到平面的距离为面积为,的面积为由,得,∴,即点到平面的距离为.【点睛】本题考查了线面平行,等体积法,意在考查学生的计算能力和空间想象能力.19.设是虚数,是实数,且.(1)求的值及的实部的取值范围;(2)设,求证:为纯虚数.参考答案:略20.已知直线l1过点A(2,1),直线l2:2x﹣y﹣1=0.(Ⅰ)若直线l1与直线l2平行,求直线l1的方程;(Ⅱ)若直线l1与y轴、直线l2分别交于点M,N,|MN|=|AN|,求直线l1的方程.参考答案:【分析】(I)由直线l1与直线l2平行,可设直线l1的方程:2x﹣y+m=0,把点A(2,1)代入可得m.(II)由已知可设直线l1的方程为y=k(x﹣2)+1,可得M(0,1﹣2k),根据|MN|=|AN|,可得N(1,1﹣k),代入直线l2的方程可得k.【解答】解:(I)∵直线l1与直线l2平行,可设直线l1的方程:2x﹣y+m=0,把点A(2,1)代入可得:4﹣1+m=0,解得m=﹣3.可得直线l1的方程为2x﹣y﹣3=0.(II)由已知可设直线l1的方程为y=k(x﹣2)+1,可得M(0,1﹣2k),∵|MN|=|AN|,∴N(1,1﹣k),代入直线l2的方程可得k=0.∴直线l1的方程为y=1.21.2017年,在国家创新驱动战略的引领下,北斗系统作为一项国家高科技工程,一个开放型创新平台,1400多个北斗基站遍布全国,上万台套设备组成星地“一张网”,国内定位精度全部达到亚米级,部分地区达到分米级,最高精度甚至可以到厘米或毫米级。最近北斗三号工程耗资9万元建成一小型设备,已知这台设备从启用的第一天起连续使用,第n天的维修保养费为元,使用它直至“报废最合算”(所谓“报废最合算”是指使用这台仪器的平均每天耗资最少)为止,一共使用了多少天,平均每天耗
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 快速修车漆面翻新承包条款20243篇
- 二零二四年度企业碳排放交易权转让合同
- 2024年技术保密协议速览3篇
- 2024年庆典志愿服务协议3篇
- 社交网络零星施工合同
- 招投标项目区块链技术
- 地质勘探班主任聘用协议
- 招聘与人才代理协议(2024年适用)
- 科技园区小吃部租赁协议样本
- 地铁施工架子工协议
- 白乳胶产品安全技术说明书
- GB_T 17166-2019 能源审计技术通则(高清版)
- 农村商业银行重要岗位轮岗管理办法
- 诗书画印的完美结合PPT精选课件
- 基质胶说明书
- 通信光缆线路施工方案
- 发展汉语“初级综合1”第1-12课测试卷
- 机房模块化预制施工方案
- 《关键产品特性(KCDS)的识别与传递》-20131105-杨佳音付艳玲
- 六以内数的分解和组成练习
- 十大奢侈品牌
评论
0/150
提交评论