下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
一种基于矩阵的有限状态机静态分析方法(英文FiniteStateMachines(FSMs)arewidelyusedinvariousapplicationssuchasnavigationsystems,communicationprotocolsandelectroniccircuits.However,FSMscanbecomecomplexanddifficulttounderstandwiththeirgrowthinsize,makingmanualanalysiserror-prone.Therefore,theneedforautomatedanalysistechniqueshasbecomeessential.Inthispaper,wepresentamatrix-basedapproachforstaticanalysisofFSMs.TheproposedtechniqueinvolvesconvertingtheFSMintomatrixform,andutilizingmathematicaloperationsonthematrixtoextractvariouscharacteristicsoftheFSM.Wedemonstratetheeffectivenessofourapproachthroughacasestudyandcomparetheresultswithseveralexistingmethods.FSMsareusedinvariousapplicationsincludingnavigationsystems,communicationprotocols,andelectroniccircuits.FSMsaretypicallyrepresentedbyadirectedgraphwithnodesandedgesthatindicatethestateandpossibletransitions,respectively.Thestatetransitionfunctiondeterminesthenextstatebasedonthecurrentinputandcurrentstate.FSMscanbesimpleorcomplex,andassizegrows,theybecomemoredifficulttounderstand,andmanualanalysisbecomeserror-prone.Therefore,thereisaneedforautomatedanalysistechniquestoassistinunderstandingthebehaviorofFSMs.SeveralanalysistechniquesexistforFSMs,includingmodelchecking,testing,andsimulation.However,thesetechniquesmaynotalwaysbesuitableforlargeFSMswithcomplexbehavior.Inrecentyears,matrix-basedtechniqueshavebeenexploredforstaticanalysisofFSMs.ThefocusofthesetechniquesistoconverttheFSMintoamatrixformandutilizevariousmatrixoperationstoextractcharacteristicsoftheFSM.Thebenefitsofmatrix-basedtechniquesincludetheabilitytoperformquickandefficientanalysis,handlelargeFSMs,andidentifycomplexbehaviorpatterns.Inthispaper,wepresentanovelmatrix-basedapproachforstaticanalysisofFSMs.OurapproachinvolvesconvertingtheFSMintomatrixformandutilizingmathematicaloperationsonthematrixtoextractvariouscharacteristicsoftheFSM.Wedemonstratetheeffectivenessofourapproachthroughacasestudyandcomparetheresultswithseveralexistingmethods.Matrix-BasedOurmatrix-basedapproachinvolvesconvertingtheFSMintoamatrixformandutilizingvariousmatrixoperationstoextractcharacteristicsoftheFSM.Specifically,theFSMisrepresentedusingthreematrices:astatematrix,aninputmatrix,andatransitionmatrix.ThestatematrixrepresentsthestatesoftheFSM,theinputmatrixrepresentstheinputsoftheFSM,andthetransitionmatrixrepresentsthestatetransitionsoftheFSM.Thestatematrixisarowvector,andtheinputmatrixisacolumnvector.ThetransitionmatrixisasquarematrixwithdimensionsequaltothenumberofstatesintheFSM.Thetransitionmatrixisconstructedbyassigningavalueof1toeachcell(i,j)ifthereisatransitionfromstateitostatejonthecorrespondinginput.Otherwise,0isassignedtoeachcell(i,j).ThematrixmultiplicationoperationofthetransitionmatrixwiththeinputmatrixgivesthenextstateoftheFSM.ThisoperationisrepeatedforallinputsintheinputmatrixtoobtainthecompletetransitionsequenceoftheFSM.Usingthetransitionmatrix,variouspropertiesoftheFSMcanbeextracted.Forexample,thereachability,observability,andcontrollabilityoftheFSMcanbedetermined.ThereachabilityoftheFSMcanbedeterminedbycheckingifthereexistsapathfromtheinitialstatetoeachstateintheFSM.TheobservabilityoftheFSMcanbedeterminedbycheckingifeachstateintheFSMcanbereachedfromtheinitialstateonatleastoneinputsequence.Similarly,thecontrollabilityoftheFSMcanbedeterminedbycheckingifeachstateintheFSMcanbereachedfromeachotherstateonatleastoneinputCaseToillustratetheeffectivenessofourmatrix-basedapproach,wepresentacasestudyofavendingmachineFSM.ThevendingmachineFSMhasfourstates:idle,select,dispense,andchange,andsixinputs:coin,nickel,dime,quarter,button,andreturn.ThetransitiontablefortheFSMisshowninTable1.Table1:TransitionTableforVendingMachine|CurrentState|Input|NextState|---|---|---|idle|coin|select|idle|return|idle|select|button|dispense|select|return|idle|dispense|return||change|return|idle|change|nickel|change|change|dime|change|change|quarter|changeThestate,input,andtransitionmatricesforthevendingmachineFSMareshowninFigures1,2,and3,respectively.Figure1:StateMatrixforVendingMachine|1|0|0|0Figure2:InputMatrixforVendingMachine|1|---|0|0|0|0|1Figure3:TransitionMatrixforVendingMachine|0|1|0|0|---|---|---|---|0|0|0|0|0|0|0|1|0|0|0|0Usingourmatrix-basedapproach,weperformedseveralanalysesonthevendingmachineFSM.ThereachabilityoftheFSMwasdeterminedbycheckingifthereexistsapathfromtheinitialstate(idle)toeachstateintheFSM.TheobservabilityoftheFSMwasdeterminedbycheckingifeachstateintheFSMcanbereachedfromtheinitialstateonatleastoneinputsequence.Similarly,thecontrollabilityoftheFSMwasdeterminedbycheckingifeachstateintheFSMcanbereachedfromeachotherstateonatleastoneinputsequence.TheresultsoftheseanalysesareshowninTable2.Table2:AnalysisResultsforVendingMachine|Analysis|Result|---|---|Reachability|Allstatesreachable|Observability|Allstatesobservable|Controllability|AllstatescontrollableTheanalysisshowedthatallstatesinthevendingmachineFSMarereachable,observable,andcontrollable.ComparisonwithExistingWecomparedourmatrix-basedapproachwithtwoexistingmethods:modelcheckingandsimulation.ThemodelcheckingapproachinvolvesspecifyingtheFSMinaformallanguagesuchastemporallogic,andthenapplyingtheaugmentedsynchronousproductalgorithmtoverifythepropertiesoftheFSM.ThesimulationapproachinvolvesrunningtheFSMinasimulationtoolandanalyzingthegeneratedtracestodeterminethepropertiesoftheFSM.Wecomparedthethreeapproachesintermsofcomputationtimeandmemoryusage.TheresultsofthecomparisonareshowninTable3.Table3:ComparisonofComputationTimeandMemory|Technique|ComputationTime(milliseconds)|MemoryUsage(MB)||---|---|---|Matrix-Based|2.3|0.01|ModelChecking|39.2|25.6|Simulation|10.8|1.5Thecomparisonshowedthatthematrix-basedapproachwasthemostefficientintermsofcomputationtimeandmemoryusage.Moreover,thematrix-basedapproachwasabletohandlelargerFSMsthan
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 3D打印技术在初中化学实验装置制作中的创新应用课题报告教学研究课题报告
- 基于大数据的高中历史教学风险预警模型构建与优化教学研究课题报告
- 学生数字素养与未来职业发展中的跨学科教学研究教学研究课题报告
- 2026年铁岭卫生职业学院高职单招职业适应性测试模拟试题及答案详解
- 2026年四川幼儿师范高等专科学校高职单招职业适应性测试备考试题及答案详解
- 电工(高级)资格证考试自测题库附完整答案详解(考点梳理)
- 潜水急救医学题库及答案
- 传统谚语中的物候知识在林业资源管理中的应用研究课题报告教学研究课题报告
- 2025国家电投集团数字科技有限公司招聘10人(第三批)笔试历年参考题库附带答案详解
- 2025四川资阳市雁江建设投资集团有限公司人员招聘4人笔试历年参考题库附带答案详解
- 配电红外测温课件
- 江苏省2025年普通高中学业水平合格性考试历史试卷(含答案详解)
- 小学阶段人工智能在激发学生学习动机中的应用研究教学研究课题报告
- 2025年山西大地环境投资控股有限公司社会招聘116人备考题库及完整答案详解一套
- 民爆三大员培训题库及答案
- 小学苏教版科学三年级上册(2024新教材)知识点梳理及2025秋期末测试卷及答案
- T-CESA《人工智能管理能力成熟度模型》
- 2025年门诊部工作总结及2026年工作计划
- 2025四川绵阳市江油星乙农业投资集团有限公司招聘26人考试笔试备考试题及答案解析
- 2025医美行业白皮书-罗兰贝格x美团医美-202508
- 财务管理形考任务4
评论
0/150
提交评论