




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
上海市八中2024届高一数学第一学期期末经典试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知某几何体的三视图如图所示,则该几何体的体积为()A. B.C. D.2.已知命题“,”是假命题,则实数的取值范围为()A. B.C. D.3.函数的部分图像如图所示,则的最小正周期为()A. B.C. D.4.郑州地铁1号线的开通运营,极大方便了市民的出行.某时刻从二七广场站驶往博学路站的过程中,10个车站上车的人数统计如下:70,60,60,60,50,40,40,30,30,10.这组数据的平均数,众数,90%分位数的和为()A.125 B.135C.165 D.1705.已知,,,夹角为,如图所示,若,,且D为BC中点,则的长度为A. B.C.7 D.86.为了得到函数的图像,只需将函数的图像上所有的点()A.向左平移个单位长度 B.向右平移个单位长度C.向左平移个单位长度 D.向右平移个单位长度7.设,且,则的最小值是()A. B.8C. D.168.已知是以为圆心的圆上的动点,且,则A. B.C. D.9.设为两条不同的直线,为三个不重合平面,则下列结论正确的是A.若,,则 B.若,,则C.若,,则 D.若,,则10.已知梯形是直角梯形,按照斜二测画法画出它的直观图(如图所示),其中,,,则直角梯形边的长度是A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.定义为中的最大值,函数的最小值为,如果函数在上单调递减,则实数的范围为__________12.已知为的外心,,,,且;当时,______;当时,_______.13.已知函数若方程恰有三个实数根,则实数的取值范围是_______.14.设x、y满足约束条件,则的最小值是________.15.函数最小值为______16.若,,.,则a,b,c的大小关系用“”表示为________________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图所示,某居民小区内建一块直角三角形草坪,直角边米,米,扇形花坛是草坪的一部分,其半径为20米,为了便于居民平时休闲散步,该小区物业管理公司将在这块草坪内铺设两条小路和,考虑到小区整体规划,要求M、N在斜边上,O在弧上(点O异于D,E两点),,.(1)设,记,求的表达式,并求出此函数的定义域.(2)经核算,两条路每米铺设费用均为400元,如何设计的大小,使铺路的总费用最低?并求出最低总费用.18.已知圆,直线,点在直线上,过点作圆的切线,切点分别为.(Ⅰ)若,求点的坐标;(Ⅱ)求证:经过三点圆必过定点,并求出所有定点的坐标.19.某商人计划经销A,B两种商品,据调查统计,当投资额为万元时,在经销A,B商品中所获得的收益分别是,,已知投资额为0时,收益为0.(1)求a,b值;(2)若该商人投入万元经营这两种商品,试建立该商人所获收益的函数模型;(3)如果该商人准备投入5万元经营这两种商品,请你帮他制定一个资金投入方案,使他能获得最大收益,并求出其收益的最大值.20.如图所示,在多面体中,四边形是正方形,,为的中点.(1)求证:平面;(2)求证:平面平面.21.已知函数(1)求当f(x)取得最大值时,x的取值集合;(2)完成下列表格并在给定的坐标系中,画出函数f(x)在上的图象.xy
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解题分析】由三视图可知,该几何体是由圆柱切掉四分之一所得,故体积为.故选B.2、D【解题分析】由题意可知,命题“,”是真命题,再利用一元二次不等式的解集与判别式的关系即可求出结果.【题目详解】由于命题“,”是假命题,所以命题“,”是真命题;所以,解得.故选:D.【题目点拨】本题考查了简易逻辑的判定、一元二次不等式的解集与判别式的关系,考查了推理能力与计算能力,属于基础题3、B【解题分析】由图可知,,计算即可.【题目详解】由图可知,,则,故选:B4、D【解题分析】利用公式可求平均数和90%分位数,再求出众数后可得所求的和.【题目详解】这组数据的平均数为,而,故90%分位数,众数为,故三者之和为,故选:D.5、A【解题分析】AD为的中线,从而有,代入,根据长度进行数量积的运算便可得出的长度【题目详解】根据条件:;故选A【题目点拨】本题考查模长公式,向量加法、减法及数乘运算,向量数量积的运算及计算公式,根据公式计算是关键,是基础题.6、B【解题分析】利用诱导公式,的图象变换规律,得出结论【题目详解】解:为了得到函数的图象,只需将函数图象上所有的点向右平移个单位长度,故选:B7、B【解题分析】转化原式为,结合均值不等式即得解【题目详解】由题意,故则当且仅当,即时等号成立故选:B8、A【解题分析】根据向量投影的几何意义得到结果即可.【题目详解】由A,B是以O为圆心的圆上的动点,且,根据向量的点积运算得到=||•||•cos,由向量的投影以及圆中垂径定理得到:||•cos即OB在AB方向上的投影,等于AB的一半,故得到=||•||•cos.故选A【题目点拨】本题考查向量的数量积公式的应用,以及向量投影的应用.平面向量数量积公式的应用主要有两种形式,一是,二是,主要应用以下几个方面:(1)求向量的夹角,(此时往往用坐标形式求解);(2)求投影,在上的投影是;(3)向量垂直则;(4)求向量的模(平方后需求).9、B【解题分析】根据线面平行线面垂直面面垂直的定义及判定定理,逐一判断正误.【题目详解】选项,若,,则可能平行,相交或异面:故错选项,若,,则,故正确.选项,若,,因为,,为三个不重合平面,所以或,故错选项,若,,则或,故错故选:【题目点拨】本题考查线面平行及线面垂直的知识,注意平行关系中有一条平行即可,而垂直关系中需满足任意性,概念辨析题.10、B【解题分析】根据斜二测画法,原来的高变成了方向的线段,且长度是原高的一半,原高为而横向长度不变,且梯形是直角梯形,故选二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】根据题意,将函数写成分段函数的形式,分析可得其最小值,即可得的值,进而可得,由减函数的定义可得,解得的范围,即可得答案【题目详解】根据题意,,则,根据单调性可得先减后增,所以当时,取得最小值2,则有,则,因为为减函数,必有,解可得:,即m的取值范围为;故答案为.【题目点拨】本题考查函数单调性、函数最值的计算,关键是求出c的值.12、(1).(2).【解题分析】(1)由可得出为的中点,可知为外接圆的直径,利用锐角三角函数的定义可求出;(2)推导出外心的数量积性质,,由题意得出关于、和的方程组,求出的值,再利用向量夹角的余弦公式可求出的值.【题目详解】当时,由可得,,所以,为外接圆的直径,则,此时;如下图所示:取的中点,连接,则,所,,同理可得.所以,,整理得,解得,,,因此,.故答案为:;.【题目点拨】本题考查三角的外心的向量数量积性质的应用,解题的关键就是推导出,,并以此建立方程组求解,计算量大,属于难题.13、【解题分析】令f(t)=2,解出t,则f(x)=t,讨论k的符号,根据f(x)的函数图象得出t的范围即可【题目详解】解:令f(t)=2得t=﹣1或t(k≠0)∵f(f(x))﹣2=0,∴f(f(x))=2,∴f(x)=﹣1或f(x)(k≠0)(1)当k=0时,做出f(x)的函数图象如图所示:由图象可知f(x)=﹣1无解,即f(f(x))﹣2=0无解,不符合题意;(2)当k>0时,做出f(x)的函数图象如图所示:由图象可知f(x)=﹣1无解,f(x)无解,即f(f(x))﹣2=0无解,不符合题意;(3)当k<0时,做出f(x)的函数图象如图所示:由图象可知f(x)=﹣1有1解,∵f(f(x))﹣2=0有3解,∴f(x)有2解,∴1,解得﹣1<k综上,k的取值范围是(﹣1,]故答案为(﹣1,]【题目点拨】本题考查了函数零点个数与函数图象的关系,数形结合思想,属于中档题14、-6【解题分析】先根据约束条件画出可行域,再利用的几何意义求最值,只需求出直线过可行域内的点时,从而得到的最小值即可【题目详解】解:由得,作出不等式组对应的平面区域如图(阴影部分ABC):平移直线,由图象可知当直线,过点A时,直线截距最大,此时z最小,由得,即,代入目标函数,得∴目标函数的最小值是﹣6故答案为:【题目点拨】本题考查简单线性规划问题,属中档题15、【解题分析】根据,并结合基本不等式“1”的用法求解即可.【题目详解】解:因为,所以,当且仅当时,等号成立故函数的最小值为.故答案为:16、cab【解题分析】根据指数函数的单调性以及对数函数的单调性分别判断出的取值范围,从而可得结果【题目详解】,即;,即;,即,综上可得,故答案为:.【题目点拨】方法点睛:解答比较大小问题,常见思路有两个:一是判断出各个数值所在区间(一般是看三个区间);二是利用函数的单调性直接解答;数值比较多的比大小问题也可以两种方法综合应用.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),;(2),.【解题分析】(1)过作的垂线交与两点,求出,即可求出的表达式,并求出此函数的定义域.(2)利用辅助角公式化简,即可得出结果.【题目详解】(1)如图,过作的垂线交与两点,则,,,,,则,,所以,,(2),,当,即时,总费用最少为.18、(1)点的坐标为或(2)见解析,过的圆必过定点和【解题分析】(1)设,由题可知,由点点距得到,解得参数值;(2)设的中点为,过三点的圆是以为直径的圆,根据圆的标准方程得到圆,根据点P在直线上得到,代入上式可求出,进而得到定点解析:(Ⅰ)设,由题可知,即,解得:,故所求点的坐标为或.(2)设的中点为,过三点的圆是以为直径的圆,设,则又∵圆又∵代入(1)式,得:整理得:无论取何值时,该圆都经过的交点或综上所述,过的圆必过定点和点睛:这个题目考查的是直线和圆的位置关系;一般直线和圆的题很多情况下是利用数形结合来解决的,联立的时候较少;还有就是在求圆上的点到直线或者定点的距离时,一般是转化为圆心到直线或者圆心到定点的距离,再加减半径,分别得到最大值和最小值19、(1);(2);(3)投入A商品4万元,B商品1万元,最大收益12万元.【解题分析】(1)根据直接计算即可.(2)依据题意直接列出式子(3)使用还原并结合二次函数性质可得结果.【小问1详解】由题可知:【小问2详解】由(1)可知:,设投入商品投入万元,投入商品万元则收益为:【小问3详解】由题可知:令,则所以所以当,即时,(万元)所以投入A商品4万元,B商品1万元,最大收益12万元20、(1)见解析;(2)见解析.【解题分析】(1)设与交于点,连接易证得四
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 企业财务电子化管理办法
- 无为公积金管理办法细则
- 停车场开发建设管理办法
- 大商所修改交易管理办法
- 土建工程精装修管理办法
- 企业发展成长课件
- 城市污水井管理办法规定
- 保定市物业装修管理办法
- 商业性贷款管理暂行办法
- 2025网络安全维护人员劳动合同模板
- 新疆警察学院面试问题及答案
- 小学三到六年级全册单词默写(素材)-2023-2024学年译林版(三起)小学英语
- 铁岭市高校毕业生“三支一扶”计划招募笔试真题2022
- DL-T1474-2021交、直流系统用高压聚合物绝缘子憎水性测量及评估方法
- 水利安全生产风险防控“六项机制”右江模式经验分享
- 天然气泄漏事故演练方案及评估
- 《养老机构认知障碍照护专区设置与服务规范》
- 妇科炎症健康教育课件
- 儿科护理学(高职)全套教学课件
- 干眼门诊建设计划书
- MBR膜系统清洗方案
评论
0/150
提交评论