江苏省镇江市淮州中学2024届高一数学第一学期期末调研模拟试题含解析_第1页
江苏省镇江市淮州中学2024届高一数学第一学期期末调研模拟试题含解析_第2页
江苏省镇江市淮州中学2024届高一数学第一学期期末调研模拟试题含解析_第3页
江苏省镇江市淮州中学2024届高一数学第一学期期末调研模拟试题含解析_第4页
江苏省镇江市淮州中学2024届高一数学第一学期期末调研模拟试题含解析_第5页
已阅读5页,还剩5页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江苏省镇江市淮州中学2024届高一数学第一学期期末调研模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.设函数y=,当x>0时,则y()A.有最大值4 B.有最小值4C有最小值8 D.有最大值82.下列各组函数中,表示为同一个函数的是A.与 B.与C.与 D.与且3.已知直线:与:平行,则的值是().A.或 B.或C.或 D.或4.已知是两相异平面,是两相异直线,则下列错误的是A.若,则 B.若,,则C.若,,则 D.若,,,则5.下列函数中,既是偶函数又在区间上单调递减的是A. B.C. D.6.已知为第二象限角,则的值是()A.3 B.C.1 D.7.若则函数的图象必不经过()A.第一象限 B.第二象限C.第三象限 D.第四象限8.下列函数,其中既是偶函数又在区间上单调递减的函数为A. B.C. D.9.对于实数x,“0<x<1”是“x<2”的()条件A.充要 B.既不充分也不必要C.必要不充分 D.充分不必要10.已知集合A={1,2,3,4},B={2,4,6,8},则AB中元素的个数为A.1 B.2C.3 D.4二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数f(x)=1g(2x-1)的定义城为______12.已知,且,写出一个满足条件的的值:______.13.已知角A为△ABC的内角,cosA=-4514.设平面向量,,则__________.若与的夹角为钝角,则的取值范围是__________15.在空间直角坐标系中,点A到坐标原点距离为2,写出点A的一个坐标:____________16.两条直线与互相垂直,则______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数,且(1)求a的值;(2)判断在区间上的单调性,并用单调性的定义证明你的判断18.已知集合,(1)当时,求;(2)若,求的取值范围19.过点的直线被两平行直线与所截线段的中点恰在直线上,求直线的方程20.某种商品的市场需求量(万件)、市场供应量(万件)与市场价格(元/件)分别近似地满足下列关系:,.当时的市场价格称为市场平衡价格,此时的需求量称为平衡需求量(1)求平衡价格和平衡需求量;(2)若该商品的市场销售量(万件)是市场需求量和市场供应量两者中的较小者,该商品的市场销售额(万元)等于市场销售量与市场价格的乘积①当市场价格取何值时,市场销售额取得最大值;②当市场销售额取得最大值时,为了使得此时市场价格恰好是新的市场平衡价格,则政府应该对每件商品征税多少元?21.若函数有两个零点,则实数的取值范围是_____.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解题分析】由均值不等式可得答案.【题目详解】由,当且仅当,即时等号成立.当时,函数的函数值趋于所以函数无最大值,有最小值4故选:B2、D【解题分析】A,B两选项定义域不同,C选项对应法则不同,D选项定义域和对应法则均相同,即可得选项.【题目详解】A.,,两个函数的定义域不同,不是同一函数,B.,,两个函数的定义域不同,不是同一函数,C.,两个的对应法则不相同,不是同一函数D.,,两个函数的定义域和对应法则相同是相同函数,故选D【题目点拨】此题是个基础题.本题考查函数的三要素:定义域、值域、对应关系,相同的函数必然具有相同的定义域、值域、对应关系.要使数与的同一函数,必须满足定义域和对应法则完全相同即可,注意分析各个选项中的个函数的定义域和对应法则是否相同,通常的先后顺序为先比较定义域是否相同,其次看对应关系或值域..3、C【解题分析】当k-3=0时,求出两直线的方程,检验是否平行;当k-3≠0时,由一次项系数之比相等且不等于常数项之比,求出k的值解:由两直线平行得,当k-3=0时,两直线方程分别为y=-1和y=3/2,显然两直线平行.当k-3≠0时,由,可得k=5.综上,k的值是3或5,故选C4、B【解题分析】利用位置关系的判定定理和性质定理逐项判断后可得正确的选项.【题目详解】对于A,由面面垂直的判定定理可知,经过面的垂线,所以成立;对于B,若,,不一定与平行,不正确;对于C,若,,则正确;对于D,若,,,则正确.故选:B.5、C【解题分析】因为函数是奇函数,所以选项A不正确;因为函为函数既不是奇函数,也不是偶函数,所以选项B不正确;函数图象抛物线开口向下,对称轴是轴,所以此函数是偶函数,且在区间上单调递减,所以,选项C正确;函数虽然是偶函数,但是此函数在区间上是增函数,所以选项D不正确;故选C考点:1、函数的单调性与奇偶性;2、指数函数与对数函数;3函数的图象6、C【解题分析】由为第二象限角,可得,再结合,化简即可.【题目详解】由题意,,因为为第二象限角,所以,所以.故选:C.7、B【解题分析】令,则的图像如图所示,不经过第二象限,故选B.考点:1、指数函数图像;2、特例法解题.8、A【解题分析】分别考查函数的奇偶性和函数的单调性即可求得最终结果.【题目详解】逐一考查所给的函数的性质:A.,函数为偶函数,在区间上单调递减;B.,函数为非奇非偶函数,在区间上单调递增;C.,函数为奇函数,在区间上单调递减;D.,函数为偶函数,在区间上单调递增;据此可得满足题意的函数只有A选项.本题选择A选项.【题目点拨】本题主要考查函数的单调性,函数的奇偶性等知识,意在考查学生的转化能力和计算求解能力.9、D【解题分析】从充分性和必要性的定义,结合题意,即可容易判断.【题目详解】若,则一定有,故充分性满足;若,不一定有,例如,满足,但不满足,故必要性不满足;故“0<x<1”是“x<2”的充分不必要条件.故选:.10、B【解题分析】由题意可得,故中元素的个数为2,所以选B.【名师点睛】集合基本运算的关注点:(1)看元素组成.集合是由元素组成的,从研究集合中元素的构成入手是解决集合运算问题的前提(2)有些集合是可以化简的,先化简再研究其关系并进行运算,可使问题简单明了,易于解决(3)注意数形结合思想的应用,常用的数形结合形式有数轴、坐标系和Venn图二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】根据对数函数定义得2x﹣1>0,求出解集即可.【题目详解】∵f(x)=lg(2x﹣1),根据对数函数定义得2x﹣1>0,解得:x>0,故答案为(0,+∞).【题目点拨】考查具体函数的定义域的求解,考查了指数不等式的解法,属于基础题12、0(答案不唯一)【解题分析】利用特殊角的三角函数值求解的值.【题目详解】因为,所以,,则,或,,同时满足即可.故答案为:013、35【解题分析】根据同角三角函数的关系,结合角A的范围,即可得答案.【题目详解】因为角A为△ABC的内角,所以A∈(0,π),因为cosA=-所以sinA=故答案为:314、①.②.【解题分析】(1)由题意得(2)∵与的夹角为钝角,∴,解得又当时,向量,共线反向,满足,但此时向量的夹角不是钝角,故不合题意综上的取值范围是答案:;15、(2,0,0)(答案不唯一)【解题分析】利用空间两点间的距离求解.【题目详解】解:设,因为点A到坐标原点的距离为2,所以,故答案为:(2,0,0)(答案不唯一)16、【解题分析】先分别求出两条直线的斜率,再利用两条直线垂直的充要条件是斜率乘积等于,即可求出结果【题目详解】直线的斜率,直线的斜率,且两直线与互相垂直,,,解得,故答案为【题目点拨】本题主要考查两直线垂直的充要条件,属于基础题.在两条直线的斜率都存在的条件下,两条直线垂直的充要条件是斜率乘积等于三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)4(2)在区间上单调递减,证明见解析【解题分析】(1)直接根据即可得出答案;(2)对任意,且,利用作差法比较的大小关系,即可得出结论.【小问1详解】解:由得,解得;【小问2详解】解:在区间内单调递减,证明:由(1)得,对任意,且,有,由,,得,,又由,得,于是,即,所以在区间上单调递减18、(1);(2).【解题分析】(1)当时,可求出集合,再求出集合,取交集即可得到答案.(2)根据,可得,分别求出集合和集合,集合是集合的子集,即可得到答案.【小问1详解】当时,集合,,即集合,,故.【小问2详解】,集合,集合,.19、【解题分析】先设出线段的中点为,再根据已知求出的值,即得点M的坐标,再写出直线l的方程.【题目详解】设线段的中点为,因为点到与的距离相等,故,则点直线方程为,即.【题目点拨】(1)本题主要考查直线方程的求法,考查直线的位置关系和点到直线的距离,意在考查学生对这些知识的掌握水平和分析推理能力.(2)点到直线的距离.20、(1)平衡价格是30元,平衡需求量是40万件.(2)①市场价格是35元时,市场总销售额取得最大值.②政府应该对每件商品征7.5元【解题分析】(1)令,得,可得,此时,从而可得结果;(2)①先求出,从而得,根据二次函数的性质分别求出两段函数的最值再比较大小即可的结果;②政府应该对每件商品征税元,则供应商的实际价格是每件元,根据可得结果.试题解析:(1)令,得,故,此时答:平衡价格是30元,平衡需求量是40万件(2)①由,,得,由题意可知:故当时,,即时,;当时,,即时,,综述:当时,时,答:市场价格是35元时,市场总销售额取得最大值②设政府应该对每件商品征税元,则供应商的实际价格是每件元,故,令,得,由题意可知上述方程的解是,代入上述方程得答:政府应该对每件商品征7.5元.【方法点睛】本题主要考查阅

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论