天津市蓟州区马伸桥中学2024届高一上数学期末综合测试模拟试题含解析_第1页
天津市蓟州区马伸桥中学2024届高一上数学期末综合测试模拟试题含解析_第2页
天津市蓟州区马伸桥中学2024届高一上数学期末综合测试模拟试题含解析_第3页
天津市蓟州区马伸桥中学2024届高一上数学期末综合测试模拟试题含解析_第4页
天津市蓟州区马伸桥中学2024届高一上数学期末综合测试模拟试题含解析_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

天津市蓟州区马伸桥中学2024届高一上数学期末综合测试模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.从1,2,3,4这4个数中,不放回地任意取两个数,两个数都是奇数概率是A. B.C. D.2.下列函数中是增函数的为()A. B.C. D.3.某人围一个面积为32m2的矩形院子,一面靠旧墙,其它三面墙要新建(其平面示意图如下),墙高3m,新墙的造价为1000元/m2,则当A.9 B.8C.16 D.644.直线与圆交点的个数为A.2个 B.1个C.0个 D.不确定5.不等式的解集为()A. B.C. D.6.已知,则A.-2 B.-1C. D.27.在北京召开的国际数学家大会的会标如图所示,它是由个相同的直角三角形与中间的小正方形拼成的一个大正方形,若直角三角形中较小的锐角为,大正方形的面积是,小正方形的面积是,则A. B.C. D.8.不论为何实数,直线恒过定点()A. B.C. D.9.已知是定义在上的奇函数,当时,,则当时,的表达式为()A. B.C. D.10.同时掷两枚骰子,所得点数之和为的概率为A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.在空间直角坐标系中,点A到坐标原点距离为2,写出点A的一个坐标:____________12.若实数x,y满足,且,则的最小值为___________.13.函数在一个周期内图象如图所示,此函数的解析式为___________.14.声强级L(单位:dB)由公式给出,其中I为声强(单位:W/m2).声强级为60dB的声强是声强级为30dB的声强的______倍.15.已知函数,则___________..16.已知,,则_____;_____三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数.(1)判断的奇偶性,并证明;(2)证明:在区间上单调递减.18.因新冠肺炎疫情影响,呼吸机成为紧缺商品,某呼吸机生产企业为了提高产品的产量,投入万元安装了一台新设备,并立即进行生产,预计使用该设备前年的材料费、维修费、人工工资等共为()万元,每年的销售收入万元.设使用该设备前年的总盈利额为万元.(1)写出关于的函数关系式,并估计该设备从第几年开始盈利;(2)使用若干年后,对该设备处理的方案有两种:案一:当总盈利额达到最大值时,该设备以10万元的价格处理;方案二:当年平均盈利额达到最大值时,该设备以50万元的价格处理;问哪种方案处理较为合理?并说明理由.19.一几何体按比例绘制的三视图如图所示(单位:).(1)试画出它的直观图(不写作图过程);(2)求它的表面积和体积.20.已知函数为奇函数(1)求实数a的值;(2)若恒成立,求实数m的取值范围21.已知集合,(1)当时,求,;(2)若是的充分不必要条件,求实数的取值范围

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解题分析】从1,2,3,4这4个数中,不放回地任意取两个数,共有(12),(1,3),(1,4),(2,1),(2,3),(2,4)(3,1),(3,2),(3,4),(4,1),(4,2),(4,3)共12种其中满足条件两个数都是奇数的有(1,3),(3,1)两种情况故从1,2,3,4这4个数中,不放回地任意取两个数,两个数都是奇数的概率.故选A.2、D【解题分析】根据基本初等函数的性质逐项判断后可得正确的选项.【题目详解】对于A,为上的减函数,不合题意,舍.对于B,为上的减函数,不合题意,舍.对于C,在为减函数,不合题意,舍.对于D,为上的增函数,符合题意,故选:D.3、B【解题分析】由题设总造价为y=3000(x+64x),应用基本不等式求最小值,并求出等号成立时的【题目详解】由题设,总造价y=1000×3×(x+2×32当且仅当x=8时等号成立,即x=8时总造价最低.故选:B.4、A【解题分析】化为点斜式:,显然直线过定点,且定点在圆内∴直线与圆相交,故选A5、D【解题分析】化简不等式并求解即可.【题目详解】将不等式变形为,解此不等式得或.因此,不等式解集为故选:D【题目点拨】本题考查一元二次不等式解法,考查学生计算能力,属于基础题.6、B【解题分析】,,则,故选B.7、C【解题分析】根据题意即可算出每个直角三角形面积,再根据勾股定理和面积关系即可算出三角形的两条直角边.从而算出【题目详解】由题意得直角三角形的面积,设三角形的边长分别为,则有,所以,所以,选C.【题目点拨】本题主要考查了三角形的面积公式以及直角三角形中,正弦、余弦的计算,属于基础题8、C【解题分析】将直线方程变形为,即可求得过定点坐标.【题目详解】根据题意,将直线方程变形为因为位任意实数,则,解得所以直线过的定点坐标为故选:C【题目点拨】本题考查了直线过定点的求法,属于基础题.9、D【解题分析】当,即时,根据当时,,结合函数的奇偶性即可得解.【题目详解】解:函数是定义在上的奇函数,,当时,,当,即时,.故选:D.10、A【解题分析】本题是一个古典概型,试验发生包含的事件是同时掷两枚骰子,共有6×6种结果,而满足条件的事件是两个点数之和是5,列举出有4种结果,根据概率公式得到结果.【题目详解】由题意知,本题是一个古典概型,试验发生包含的事件是同时掷两枚骰子,共有6×6=36种结果,而满足条件的事件是两个点数之和是5,列举出有(1,4)(2,3)(3,2)(4,1),共有4种结果,根据古典概型概率公式得到P=.【题目点拨】古典概型要求能够列举出所有事件和满足条件的事件发生的个数,本题可以列举出所有事件,概率问题同其他的知识点结合在一起,实际上是以概率问题为载体二、填空题:本大题共6小题,每小题5分,共30分。11、(2,0,0)(答案不唯一)【解题分析】利用空间两点间的距离求解.【题目详解】解:设,因为点A到坐标原点的距离为2,所以,故答案为:(2,0,0)(答案不唯一)12、8【解题分析】由给定条件可得,再变形配凑借助均值不等式计算作答.【题目详解】由得:,又实数x,y满足,则,当且仅当,即时取“=”,由解得:,所以当时,取最小值8.故答案为:8【题目点拨】思路点睛:在运用基本不等式时,要特别注意“拆”、“拼”、“凑”等技巧,使用其满足基本不等式的“一正”、“二定”、“三相等”的条件.13、【解题分析】根据所给的图象,可得到,周期的值,进而得到,根据函数的图象过点可求出的值,得到三角函数的解析式【题目详解】由图象可知,,,由,三角函数的解析式是函数的图象过,,把点的坐标代入三角函数的解析式,,,又,,三角函数的解析式是.故答案为:.14、1000【解题分析】根据已知公式,应用指对数的关系及运算性质求60dB、30dB对应的声强,即可得结果.【题目详解】由题设,,可得,,可得,∴声强级为60dB的声强是声强级为30dB的声强的倍.故答案为:1000.15、17【解题分析】根据分段函数解析式计算可得;【题目详解】解:因为,故答案为:16、①.②.【解题分析】利用指数式与对数的互化以及对数的运算性质化简可得结果.【题目详解】因为,则,故.故答案为:;2三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)是偶函数,证明见解析(2)证明见解析【解题分析】(1)先求定义域,再利用函数奇偶性的定义证明即可,(2)利用单调性的定义证明【小问1详解】为偶函数,证明如下:定义域为R,因为,所以是偶函数.【小问2详解】任取,且,则因为,所以,所以,即,由函数单调性定义可知,在区间上单调递减.18、(1),3年;(2)第二种方案更合适,理由见解析.【解题分析】(1)利用年的销售收入减去成本,求得的表达式,由,解一元二次不等式求得从第年开始盈利.(2)方案一:利用配方法求得总盈利额的最大值,进而求得总利润;方案二:利用基本不等式求得时年平均利润额达到最大值,进而求得总利润.比较两个方案获利情况,作出合理的处理方案.【题目详解】(1)由题意得:由得即,解得由,设备企业从第3年开始盈利(2)方案一总盈利额,当时,故方案一共总利润,此时方案二:每年平均利润,当且仅当时等号成立故方案二总利润,此时比较两种方案,获利都是170万元,但由于第一种方案只需要10年,而第二种方案需要6年,故选择第二种方案更合适.【题目点拨】本小题主要考查一元二次不等式的解法,考查基本不等式求最值,属于中档题.19、(1)直观图见解析;(2),.【解题分析】(1)由三视图直接画出它的直观图即可;(2)由三视图可知该几何体是长方体被截取一个角,分别计算其表面积和体积可得答案.【题目详解】解:(1)直观图如图所示.(2)由三视图可知该几何体是长方体被截取一个角,且该几何体的体积是以,,为棱的长方体的体积的.在直角梯形中,作,则是正方形,∴.在中,,,∴.∴.∴几何体的体积.∴该几何体的表面积为,体积为.【题目点拨】本题主要考查空间几何体的三视图与直观图、空间几何体的表面积与体积,考查学生的直观想象能力,数学计算能力,属于中档题.20、(1)(2)【解题分析】(1)利用奇函数定义求出实数a的值;(2)先求解定义域,然后参变分离后求出的取值范围

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论