吉林省扶余市一中2024届高一数学第一学期期末达标检测模拟试题含解析_第1页
吉林省扶余市一中2024届高一数学第一学期期末达标检测模拟试题含解析_第2页
吉林省扶余市一中2024届高一数学第一学期期末达标检测模拟试题含解析_第3页
吉林省扶余市一中2024届高一数学第一学期期末达标检测模拟试题含解析_第4页
吉林省扶余市一中2024届高一数学第一学期期末达标检测模拟试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

吉林省扶余市一中2024届高一数学第一学期期末达标检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知是两条不同直线,是三个不同平面,下列命题中正确的是()A.若则 B.若则C.若则 D.若则2.下列结论中正确的个数是()①命题“所有的四边形都是矩形”是存在量词命题;②命题“”是全称量词命题;③命题“”的否定为“”;④命题“是的必要条件”是真命题;A.0 B.1C.2 D.33.已知扇形的圆心角为,面积为,则扇形的半径为()A. B.C. D.4.若方程有两个不相等的实数根,则实根的取值范围是()A. B.C. D.5.若函数在区间上单调递增,则实数k的取值范围是()A. B.C. D.6.已知集合,那么A.(-1,2) B.(0,1)C.(-1,0) D.(1,2)7.要得到函数的图象,只需将函数的图象()A.向左平移个单位长度B.向左平移个单位长度C.向右平移个单位长度D.向右平移个单位长度8.若,,则的值为A. B.C. D.9.“”是“”的A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件10.为了鼓励大家节约用水,遵义市实行了阶梯水价制度,下表是年遵义市每户的综合用水单价与户年用水量的关系表.假设居住在遵义市的艾世宗一家年共缴纳的水费为元,则艾世宗一家年共用水()分档户年用水量综合用水单价/(元)第一阶梯(含)第二阶梯(含)第三阶梯以上A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.若,,,则的最小值为______.12.___________.13.若点在函数的图象上,则的值为______.14.函数的定义域是______________.15.集合,,则__________.16.已知在平面直角坐标系中,角顶点在原点,始边与轴的正半轴重合,终边经过点,则___________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知定义在R上的函数满足:①对任意实数x,y,都有;②对任意(1)求;(2)判断并证明函数的奇偶性;(3)若,直接写出的所有零点(不需要证明)18.已知向量满足,.(1)若的夹角为,求;(2)若,求与的夹角.19.已知函数f(x)是偶函数,且x≤0时,f(x)=-(其中e为自然对数的底数)(Ⅰ)比较f(2)与f(-3)大小;(Ⅱ)设g(x)=2(1-3a)ex+2a+(其中x>0,a∈R),若函数f(x)的图象与函数g(x)的图象有且仅有一个公共点,求实数a的取值范围.20.在平面直角坐标系中,已知,,动点满足.(1)若,求面积的最大值;(2)已知,是否存在点C,使得,若存在,求点C的个数;若不存在,说明理由.21.若是从四个数中任取的一个数,是从三个数中任取的一个数(1)求事件“”的概率;(2)求事件“方程有实数根”的概率

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解题分析】A项,可能相交或异面,当时,存在,,故A项错误;B项,可能相交或垂直,当

时,存在,,故B项错误;C项,可能相交或垂直,当

时,存在,,故C项错误;D项,垂直于同一平面的两条直线相互平行,故D项正确,故选D.本题主要考查的是对线,面关系的理解以及对空间的想象能力.考点:直线与平面、平面与平面平行的判定与性质;直线与平面、平面与平面垂直的判定与性质.2、C【解题分析】根据存在量词命题、全称量词命题的概念,命题的否定,必要条件的定义,分析选项,即可得答案.【题目详解】对于①:命题“所有的四边形都是矩形”是全称量词命题,故①错误;对于②:命题“”是全称量词命题;故②正确;对于③:命题,则,故③错误;对于④:可以推出,所以是的必要条件,故④正确;所以正确的命题为②④,故选:C3、C【解题分析】利用扇形的面积公式即可求解.【题目详解】设扇形的半径为,则扇形的面积,解得:,故选:C4、B【解题分析】方程有两个不相等的实数根,转化为有两个不等根,根据图像得到只需要故答案为B.5、C【解题分析】根据函数的单调性得到关于k的不等式组,解出即可【题目详解】解:f(x)==1+,若f(x)在(﹣2,+∞)上单调递增,则,故k≤﹣2,故选:C6、A【解题分析】利用数轴,取所有元素,得【名师点睛】对于集合的交、并、补运算问题,应先把集合化简再计算,常常借助数轴或韦恩图处理7、D【解题分析】化简得到,根据平移公式得到答案.【题目详解】;故只需向右平移个单位长度故选:【题目点拨】本题考查了三角函数的平移,意在考查学生对于三角函数的变换的理解的掌握情况.8、A【解题分析】由两角差的正切公式展开计算可得【题目详解】解:,,则,故选A【题目点拨】本题考查两角差的正切公式:,对应还应该掌握两角和的正切公式,及正弦余弦公式.本题是基础9、A【解题分析】利用或,结合充分条件与必要条件的定义可得结果.详解】根据题意,由于或,因此可以推出,反之,不成立,因此“”是“”的充分而不必要条件,故选A.【题目点拨】判断充分条件与必要条件应注意:首先弄清条件和结论分别是什么,然后直接依据定义、定理、性质尝试.对于带有否定性的命题或比较难判断的命题,除借助集合思想化抽象为直观外,还可利用原命题和逆否命题、逆命题和否命题的等价性,转化为判断它的等价命题;对于范围问题也可以转化为包含关系来处理.10、B【解题分析】设户年用水量为,年缴纳税费为元,根据题意求出的解析式,再利用分段函数的解析式可求出结果.【题目详解】设户年用水量为,年缴纳的税费为元,则,即,当时,,当时,,当时,,所以,解得,所以艾世宗一家年共用水.故选:B二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】利用基本不等式求出即可.【题目详解】解:若,,则,当且仅当时,取等号则的最小值为.故答案为:.【题目点拨】本题考查了基本不等式的应用,属于基础题.12、2【解题分析】利用换底公式及对数的性质计算可得;【题目详解】解:.故答案为:13、【解题分析】将点代入函数解析式可得的值,再求三角函数值即可.【题目详解】因为点在函数的图象上,所以,解得,所以,故答案为:.14、【解题分析】根据表达式有意义列条件,再求解条件得定义域.【题目详解】由题知,,整理得解得.所以函数定义域是.故答案为:.15、【解题分析】通过求二次函数的值域化简集合,再根据交集的概念运算可得答案.【题目详解】因为,,所以.故答案为:【题目点拨】本题考查了交集的运算,考查了求二次函数的值域,搞清楚集合中元素符号是解题关键,属于基础题.16、【解题分析】根据角的终边经过点,利用三角函数的定义求得,然后利用二倍角公式求解.【题目详解】因为角的终边经过点,所以,所以,所以,故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)为偶函数,证明见解析(3)【解题分析】(1)令,化简可求出,(2)令,则,化简后结合函数奇偶性的定义判断即可,(3)利用赋值求解即可【小问1详解】令,则,,得或,因对任意,所以【小问2详解】为偶函数证明:令,则,得,所以为偶函数【小问3详解】令,则,因为,所以,当时,,当时,,当时,,当时,,……,所以即当时,,所以函数的零点为18、(1)(2)【解题分析】(1)利用公式即可求得;(2)利用向量垂直的等价条件以及夹角公式即可求解.【题目详解】解:(1)由已知,得,所以,所以.(2)因为,所以.所以,即,所以.又,所以,即与的夹角为.【题目点拨】主要考查向量模、夹角的求解,数量积的计算以及向量垂直的等价条件的运用.属于基础题.19、(I);(II).【解题分析】(Ⅰ)由偶函数在时递减,时递增,即可判断(2)和的大小关系;(Ⅱ)由题意可得在时有且只有一个实根,可得在时有且只有一个实根,可令,则,求得导数判断单调性,计算可得所求范围【题目详解】解:(Ⅰ)函数f(x)是偶函数,且x≤0时,f(x)=-,可得f(x)在x<0时递减,x>0时递增,由f(-3)=f(3),可得f(2)<f(3),即有f(2)<f(-3);(Ⅱ)设g(x)=2(1-3a)ex+2a+(其中x>0,a∈R),若函数f(x)的图象与函数g(x)的图象有且仅有一个公共点,即为2(1-3a)ex+2a+=-在x>0时有且只有一个实根,可得3a=在x>0时有且只有一个实根,可令t=ex(t>1),则h(t)=,h′(t)=,在t>1时,h′(t)<0,h(t)递减,可得h(t)∈(0,),则3a∈(0,),即a∈(0,)另解:令t=ex(t>1),则h(t)==1+,可令k=4t+7(k>11),可得h(t)=1+,由3k+在k>11递增,可得h(t)在k>11递减,可得h(t)∈(0,),则3a∈(0,),即a∈(0,)【题目点拨】本题考查函数的奇偶性和单调性的判断和运用,考查函数方程的转化思想,以及构造函数法,运用导数判断单调性,考查化简整理的运算能力,属于中档题.20、(1)(2)存在2个点C符合要求【解题分析】(1)由,利用两点间距离公式可得,整理得到,由,若面积最大,则到距离最大,即最大,求解即可;(2)由,利用两点间距离公式可得,整理得到,则点为圆与圆的交点,进而由两圆的位置关系即可得到符合条件的点的个数【题目详解】解:(1)由,得,化简,即,所以,当时,有最大值,此时点到距离最大为,因为,所以面积的最大值为(2)存在,由,得,化简得,即.故点C在以为圆心,半径为2的圆上,结合(1)中知,点C还在以为圆心,半径为的圆上,由于,,,且,所以圆M、圆N相交,有2个公共点,故存在2个点C符合要求.【题目点拨】本题考查两点间距离公式的应用,考查圆与圆的位置关系的应用,考查运算能力21、(1)(2)【解题分析】(1)利用列举法求解,先列出取两数的所有情况,再找出满足的情况,然后根据古典概型的概率公式求解即可,(2)由题

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论