




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
福建省福清福清华侨中学2024届高一数学第一学期期末达标检测模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.某人用如图所示的纸片,沿折痕折后粘成一个四棱锥形的“走马灯”,正方形做灯底,且有一个三角形面上写上了“年”字,当灯旋转时,正好看到“新年快乐”的字样,则在①、②、③处应依次写上A.快、新、乐 B.乐、新、快C.新、乐、快 D.乐、快、新2.在底面为正方形的四棱锥中,侧面底面,,,则异面直线与所成的角为()A. B.C. D.3.设平面向量满足,且,则的最大值为A.2 B.3C. D.4.函数的一个零点是()A. B.C. D.5.有四个关于三角函数的命题::xR,+=:x、yR,sin(x-y)=sinx-siny:x=sinx:sinx=cosyx+y=其中假命题的是A., B.,C., D.,6.已知角的顶点为坐标原点,始边与轴的非负半轴重合,终边上一点,则A. B.C. D.7.已知函数是定义在上的偶函数,当时,,则函数的零点个数为()A.20 B.18C.16 D.148.已知,,,则a,b,c的大小关系为()A B.C. D.9.已知,为锐角,,,则的值为()A. B.C. D.10.轴截面是正三角形的圆锥称作等边圆锥,则等边圆锥的侧面积是底面积的A.4倍 B.3倍C.倍 D.2倍二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数,若时,恒成立,则实数k的取值范围是_____.12.由直线上的任意一个点向圆引切线,则切线长的最小值为________.13.无论实数k取何值,直线kx-y+2+2k=0恒过定点__14.函数在一个周期内图象如图所示,此函数的解析式为___________.15.函数的单调递减区间为__16.为了实现绿色发展,避免用电浪费,某城市对居民生活用电实行“阶梯电价”.计费方法如表所示,若某户居民某月交纳电费227元,则该月用电量为_______度.每户每月用电量电价不超过210度的部分0.5元/度超过210度但不超过400度的部分0.6元/度超过400度的部分0.8元/度三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数.(1)求函数的定义域;(2)若对任意恒有,求实数的取值范围.18.已知函数的部分图象如图所示.(1)求的解析式;(2)将图象上所有点的横坐标变为原来的倍(纵坐标不变),得到的图象.又求的值.19.某兴趣小组在研究性学习活动中,通过对某商店一种商品销售情况的调查发现:该商品在过去的一个月内(以天计)的日销售价格(元)与时间(天)的函数关系近似满足(为常数).该商品的日销售量(个)与时间(天)部分数据如下表所示:(天)(个)已知第天该商品日销售收入为元.(1)求出该函数和的解析式;(2)求该商品的日销售收入(元)的最小值.20.已知全集,求:(1);(2).21.已知函数(A,是常数,,,)在时取得最大值3(1)求的最小正周期;(2)求的解析式;(3)若,求
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解题分析】根据四棱锥图形,正好看到“新年快乐”的字样,可知顺序为②年①③,即可得出结论【题目详解】根据四棱锥图形,正好看到“新年快乐”的字样,可知顺序为②年①③,故选A【题目点拨】本题考查四棱锥的结构特征,考查学生对图形的认识,属于基础题.2、C【解题分析】由已知可得PA⊥平面ABCD,底面ABCD为正方形,分别过P,D点作AD,AP的平行线交于M,连接CM,AM,因为PB∥CM,所以ACM就是异面直线PB与AC所成的角,再求解即可.【题目详解】由题意:底面ABCD为正方形,侧面底面,,面面,PA⊥平面ABCD,分别过P,D点作AD,AP的平行线交于M,连接CM,AM,∵PM∥AD,AD∥BC,PM=AD,AD=BC∴PBCM是平行四边形,∴PB∥CM,所以∠ACM就是异面直线PB与AC所成的角设PA=AB=a,在三角形ACM中,,∴三角形ACM是等边三角形所以∠ACM等于60°,即异面直线PB与AC所成的角为60°故选:C.【题目点拨】思路点睛:先利用面面垂直得到PA⊥平面ABCD,分别过P,D点作AD,AP的平行线交于M,连接CM,AM,得到∠ACM就是异面直线PB与AC所成的角3、C【解题分析】设,∵,且,∴∵,当且仅当与共线同向时等号成立,∴的最大值为.选C点睛:由于向量,且,因此向量确定,这是解题的基础也是关键.然后在此基础上根据向量模的三角不等式可得的范围,解题时要注意等号成立的条件4、B【解题分析】根据正弦型函数的性质,函数的零点,即时的值,解三角方程,即可求出满足条件的的值【题目详解】解:令函数,则,则,当时,.故选:B5、A【解题分析】故是假命题;令但故是假命题.6、A【解题分析】由三角函数定义得tan再利用同角三角函数基本关系求解即可【题目详解】由三角函数定义得tan,即,得3cos解得或(舍去)故选A【题目点拨】本题考查三角函数定义及同角三角函数基本关系式,熟记公式,准确计算是关键,是基础题7、C【解题分析】解方程,得或,作出的图象,由对称性只要作的部分,观察的图象与直线和直线的交点的个数即得【题目详解】,或根据函数解析式以及偶函数性质作图象,当时,.,是抛物线的一段,当,由的图象向右平移2个单位,并且将每个点的纵坐标缩短为原来的一半得到,依次得出y轴右侧的图象,根据对称轴可得左侧的结论,时,,的图象与直线和的交点个数,分别有3个和5个,∴函数g(x)的零点个数为,故选:C【题目点拨】本题考查函数零点个数,解题方法是数形结合思想方法,把函数零点个数转化为函数图象与直线交点个数,由图象易得结论8、A【解题分析】比较a,b,c的值与中间值0和1的大小即可﹒【题目详解】,,所以,故选:A.9、A【解题分析】,根据正弦的差角公式展开计算即可.【题目详解】∵,,∴,又∵,∴,又,∴,∴,,∴故选:A.10、D【解题分析】由题意,求出圆锥的底面面积,侧面面积,即可得到比值【题目详解】圆锥的轴截面是正三角形,设底面半径为r,则它的底面积为πr2;圆锥的侧面积为:2rπ•2r=2πr2;圆锥的侧面积是底面积的2倍故选D【题目点拨】本题是基础题,考查圆锥的特征,底面面积,侧面积的求法,考查计算能力二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】当时,,当时,,又,如图所示:当时,在处取得最大值,且,令,则数列是以1为首项,以为公比的等比数列,∴,∴,若时,恒成立,只需,当上,均有恒成立,结合图形知:,∴,∴,令,,当时,,∴,∴,当时,,,∴,∴最大,∴,∴.考点:1.函数图像;2.恒成立问题;3.数列的最值.12、【解题分析】利用切线和点到圆心的距离关系即可得到结果.【题目详解】圆心坐标,半径要使切线长最小,则只需要点到圆心的距离最小,此时最小值为圆心到直线的距离,此时,故答案为:【题目点拨】本题考查了直线与圆的位置关系,同时考查了点到直线的距离公式,属于基础题.13、【解题分析】由kx-y+2+2k=0,得(x+2)k+(2-y)=0,由此能求出无论实数k取何值,直线kx-y+2+2k=0恒过定点【题目详解】∵kx-y+2+2k=0,∴(x+2)k+(2-y)=0,解方程组,得∴无论实数k取何值,直线kx-y+2+2k=0恒过定点故答案为:14、【解题分析】根据所给的图象,可得到,周期的值,进而得到,根据函数的图象过点可求出的值,得到三角函数的解析式【题目详解】由图象可知,,,由,三角函数的解析式是函数的图象过,,把点的坐标代入三角函数的解析式,,,又,,三角函数的解析式是.故答案为:.15、【解题分析】由根式内部的代数式大于等于0,求得原函数的定义域,再求出内层函数的减区间,即可得到原函数的减区间【题目详解】由,得或,令,该函数在上单调递减,而y=是定义域内的增函数,∴函数的单调递减区间为故答案为:16、410【解题分析】由题意列出电费(元)关于用电量(度)的函数,令,代入运算即可得解.【题目详解】由题意,电费(元)关于用电量(度)的函数为:,即,当时,,若,,则,解得.故答案为:410.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)答案见解析;(2).【解题分析】(1)根据对数的真数为正即可求解;(2)对任意恒有对恒成立,参变分离即可求解a的范围.【小问1详解】由得,,等价于,∵方程的,当,即时,恒成立,解得,当,即时,原不等式即为,解得且;当,即,又,即时,方程的两根、,∴解得或,综上可得当时,定义域为,当时,定义域为且,当时,定义域为或;【小问2详解】对任意恒有,即对恒成立,∴,而,在上是减函数,∴,所以实数的取值范围为.18、(1);(2).【解题分析】(1)由顶点及周期可得,,再由,可得,从而得解;(2)根据条件得,再结合诱导公式和同角三角函数关系可得解.【题目详解】(1)由图可知,由,得,所以,所以,因为,所以,则,因为,所以,,(2)由题意,,由,得,.【题目点拨】方法点睛:确定的解析式的步骤:(1)求,,确定函数的最大值和最小值,则,;(2)求,确定函数的周期,则;(3)求,常用方法有以下2种方法:①代入法:把图象上的一个已知点代入(此时要注意该点在上升区间上还是在下降区间上)或把图象的最高点或最低点代入;②五点法:确定值时,往往以寻找“五点法”中的特殊点作为突破口.19、(1),(2)最小值为元【解题分析】(1)利用可求得的值,利用表格中的数据可得出关于、的方程组,可解得、的值,由此可得出函数和的解析式;(2)求出函数的解析式,利用基本不等式、函数单调性求得在且、且的最小值,比较大小后可得出结论.【小问1详解】解:依题意知第天该商品的日销售收入为,解得,所以,.由表格可知,解得.所以,.【小问2详解】解:由(1)知,当且时,,当且时,.,当时,由基本不等式可得,当且仅当时,等号成立,即.当时,因为函数、均为减函数,则函数为减函数,所以当时,取得最小值,且.综上所述,当时,取得最小值,且.故该商品的日销售收入的最小值为元.20、(1);(2)或.【解题分析】(1)求出集合,再根据集合间的基本运算即可求解;(2)求出,再根据集合间的基本运算即可求解.【题目详解】解:(1)由,解得:,故,又,;(2)由(1)知:,或,或.21、(1);(2);(3)【解题分析】(1)根据最小正周期公式可直接求出;(2)根据函数图象与性
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 焦作空压机采购合同范本
- 风电运维总包合同协议书
- 甲方转乙方猎头合同范本
- 物料设计制作合同协议书
- 网络平台会员协议书范本
- 特种车辆雇佣协议书模板
- 美业学徒合同协议书模板
- 离婚法院调解协议书范本
- 项目文化墙设计合同范本
- 银行个性化分期协议合同
- 《气胸护理查房》课件
- 2023年咸阳市三原县社区工作者招聘考试真题
- 村级维稳应急预案
- 2023年上海科学院招考笔试参考题库(共500题)答案详解版
- 2023年下半年浙江温州苍南县事业单位选调工作人员笔试参考题库(共500题)答案详解版
- 上海初一新生分班(摸底)语文考试模拟试卷(10套试卷带答案解析)
- (2023版)小学语文一年级上册电子课本
- 新华镇生活污水处理管网与新华农场管网并网项目环境影响报告表
- 人教版八年级上册数学全册同步讲义
- 乙醇酸安全技术说明书(msds)
- 《旅游学概论》第七章
评论
0/150
提交评论