




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届湖南省株洲市高一数学第一学期期末复习检测模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.函数y=的单调递减区间是()A.(-∞,1) B.[1,+∞)C.(-∞,-1) D.(-1,+∞)2.将一个直角三角形绕其一直角边所在直线旋转一周,所得的几何体为()A.一个圆台 B.两个圆锥C.一个圆柱 D.一个圆锥3.设,则“”是“”的()A.充分而不必要条件 B.必要而不充分条件C.充要条件 D.既不充分也不必要条件4.已知某产品的总成本C(单位:元)与年产量Q(单位:件)之间的关系为C=310Q2+3000.设该产品年产量为Q时的平均成本为fA.30 B.60C.900 D.1805.函数,则函数()A.在上是增函数 B.在上是减函数C.在是增函数 D.在是减函数6.“对任意,都有”的否定形式为()A.对任意,都有B.不存在,都有C.存在,使得D.存在,使得7.已知直线ax+4y-2=0与2x-5y+b=0互相垂直,垂足为(1,c),则a+b+c的值为()A.-4 B.20C.0 D.248.设函数的定义域为,若存在,使得成立,则称是函数的一个不动点,下列函数存在不动点的是()A. B.C. D.9.已知函数,则的大致图像为()A. B.C. D.10.已知幂函数的图象过点,则下列说法中正确的是()A.的定义域为 B.的值域为C.为偶函数 D.为减函数二、填空题:本大题共6小题,每小题5分,共30分。11.已知角的顶点为坐标原点,始边为x轴非负半轴,若是角终边上的一点,则______12.已知圆锥的表面积为,且它的侧面展开图是一个半圆,求这个圆锥的体积是______13.已知函数,则的值等于______14.方程的解为__________15.设函数的图象关于y轴对称,且其定义域为,则函数在上的值域为________.16.若角的终边经过点,则___________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.(1)已知,求;(2)已知,,,是第三象限角,求的值.18.设函数,将该函数的图象向左平移个单位长度后得到函数的图象,函数的图象关于y轴对称.(1)求的值,并在给定的坐标系内,用“五点法”列表并画出函数在一个周期内的图象;(2)求函数的单调递增区间;(3)设关于x的方程在区间上有两个不相等的实数根,求实数m的取值范围.19.已知四棱锥,其中面为的中点.(1)求证:面;(2)求证:面面;(3)求四棱锥的体积.20.定义在上的函数,如果满足:对任意,存在常数,都有成立,则称是上的有界函数,其中称为函数的上界,已知函数.(1)当时,求函数在上的值域,并判断函数在上是否为有界函数,请说明理由;(2)若函数在上是以4为上界的有界函数,求实数的取值范围.21.如图,是半径为的半圆,为直径,点为的中点,点和点为线段的三等分点,平面外一点满足平面,=.(1)证明:;(2)求点到平面的距离.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解题分析】令t=-x2+2x﹣1,则y,故本题即求函数t的增区间,再结合二次函数的性质可得函数t的增区间【题目详解】令t=-x2+2x﹣1,则y,故本题即求函数t的增区间,由二次函数的性质可得函数t的增区间为(-∞,1),所以函数的单调递减区间为(-∞,1).故答案为A【题目点拨】本题主要考查指数函数和二次函数的单调性,考查复合函数的单调性,意在考查学生对这些知识的掌握水平和分析推理能力.2、D【解题分析】依题意可知,这是一个圆锥.3、A【解题分析】解绝对值不等式求解集,根据充分、必要性的定义判断题设条件间的充分、必要关系.【题目详解】由,可得,∴“”是“”的充分而不必要条件.故选:A.4、B【解题分析】利用基本不等式进行最值进行解题.【题目详解】解:∵某产品的总成本C(单位:元)与年产量Q(单位:件)之间的关系为C=∴f(Q)=当且仅当3Q10=3000Q∴fQ的最小值是60故选:B5、C【解题分析】根据基本函数单调性直接求解.【题目详解】因为,所以函数在是增函数,故选:C6、D【解题分析】全称命题的否定是特称命题,据此得到答案.【题目详解】全称命题的否定是特称命题,则“对任意,都有”的否定形式为:存在,使得.故选:D.【题目点拨】本题考查了全称命题的否定,属于简单题.7、A【解题分析】由垂直求出,垂足坐标代入已知直线方程求得,然后再把垂僄代入另一直线方程可得,从而得出结论【题目详解】由直线互相垂直可得,∴a=10,所以第一条直线方程为5x+2y-1=0,又垂足(1,c)在直线上,所以代入得c=-2,再把点(1,-2)代入另一方程可得b=-12,所以a+b+c=-4.故选:A8、D【解题分析】把选项中不同的代入,去判断方程是否有解,来验证函数是否存在不动点即可.【题目详解】选项A:若,则,即,方程无解.故函数不存在不动点;选项B:若,则,即,方程无解.故函数不存在不动点;选项C:若,则,即或,两种情况均无解.故函数不存在不动点;选项D:若,则,即设,则,则函数在上存在零点.即方程有解.函数存在不动点.故选:D9、B【解题分析】计算的值即可判断得解.【题目详解】解:由题得,所以排除选项A,D.,所以排除选项C.故选:B10、C【解题分析】首先求出幂函数解析式,再根据幂函数的性质一一判断即可.【题目详解】解:因为幂函数的图象过点,所以,所以,所以,定义域为,且,即为偶函数,因为,所以,所以,故A错误,B错误,C正确,又在上单调递减,根据偶函数的对称性可得在上单调递增,故D错误;故选:C二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】根据余弦函数的定义可得答案.【题目详解】解:∵是角终边上的一点,∴故答案为:.12、【解题分析】设圆锥母线长为,底面圆半径长,侧面展开图是一个半圆,此半圆半径为,半圆弧长为,表面积是侧面积与底面积的和,则圆锥的底面直径圆锥的高点睛:本题主要考查了棱柱,棱锥,棱台的侧面积和表面积的知识点.首先,设圆锥母线长为,底面圆半径长,然后根据侧面展开图,分析出母线与半径的关系,然后求解其底面体积即可13、2【解题分析】由分段函数可得,从而可得出答案.【题目详解】解:由,得.故答案为:2.14、【解题分析】令,则解得:或即,∴故答案为15、【解题分析】∵函数的图象关于y轴对称,且其定义域为∴,即,且为偶函数∴,即∴∴函数在上单调递增∴,∴函数在上的值域为故答案为点睛:此题主要考查函数二次函数图象对称的性质以及二次函数的值域的求法,求解的关键是熟练掌握二次函数的性质,本题理解对称性很关键16、【解题分析】根据三角函数的定义求出和的值,再由正弦的二倍角公式即可求解.【题目详解】因为角的终边经过点,所以,,则,所以,,所以,故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解题分析】(1)根据诱导公式化简函数后代入求解即可;(2)根据同角三角函数的基本关系求出,利用两角差的余弦公式求解即可.【题目详解】(1)(2)由,,得又由,,得所以.18、(1),图象见解析;(2)(3)【解题分析】(1)化简解析式,通过三角函数图象变换求得,结合关于轴对称求得,利用五点法作图即可;(2)利用整体代入法求得的单调递增区间.(3)化简方程,利用换元法,结合一元二次方程根的分布求得的取值范围.【小问1详解】.所以,将该函数的图象向左平移个单位后得到函数,则,该函数的图象关于轴对称,可知该函数为偶函数,故,,解得,.因为,所以得到.所以函数,列表:000作图如下:【小问2详解】由函数,令,,解得,,所以函数的单调递增区间为【小问3详解】由(1)得到,化简得,令,,则.关于的方程,即,解得,.当时,由,可得;要使原方程在上有两个不相等的实数根,则,解得.故实数的取值范围为.19、(1)证明见解析;(2)证明见解析;(3).【解题分析】(1)取中点,连接,根据三角形的中位线,得到四边形为平行四边形,进而得到,再结合线面平行的判定定理,即可证明面;(2)根据为等边三角形,为的中点,面,得到,根据线面垂直的判定定理得到面,则面,再由面面垂直的判定定理,可得面面;(3)连接,可得四棱锥分为两个三棱锥和,利用体积公式,即可求解三棱锥的体积.试题解析:(1)证明:取中点,连接分别是的中点,,且与平行且相等,为平行四边形,,又面面面.(2)证明:为等边三角形,,又面面垂直于面的两条相交直线面面面面面.(3)连接,该四棱锥分为两个三棱锥和.20、(1)值域为,不是有界函数;(2)【解题分析】(1)把代入函数的表达式,得出函数的单调区间,结合有界函数的定义进行判断;(2)由题意知,对恒成立,令,对恒成立,设,,求出单调区间,得到函数的最值,从而求出的值.试题解析:(1)当时,,令,∵,∴,;∵在上单调递增,∴,即在上的值域为,故不存在常数,使成立.∴函数在上不是有界函数(2)由题意知,对恒成立,即:,令,∵,∴.∴对恒成立,∴,设,,由,由于在上递增,在上递减,在上的最
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论