![2024届淮北市重点中学高一上数学期末复习检测模拟试题含解析_第1页](http://file4.renrendoc.com/view/0105d5894db6597dd7b1d8f7dd8be9bf/0105d5894db6597dd7b1d8f7dd8be9bf1.gif)
![2024届淮北市重点中学高一上数学期末复习检测模拟试题含解析_第2页](http://file4.renrendoc.com/view/0105d5894db6597dd7b1d8f7dd8be9bf/0105d5894db6597dd7b1d8f7dd8be9bf2.gif)
![2024届淮北市重点中学高一上数学期末复习检测模拟试题含解析_第3页](http://file4.renrendoc.com/view/0105d5894db6597dd7b1d8f7dd8be9bf/0105d5894db6597dd7b1d8f7dd8be9bf3.gif)
![2024届淮北市重点中学高一上数学期末复习检测模拟试题含解析_第4页](http://file4.renrendoc.com/view/0105d5894db6597dd7b1d8f7dd8be9bf/0105d5894db6597dd7b1d8f7dd8be9bf4.gif)
![2024届淮北市重点中学高一上数学期末复习检测模拟试题含解析_第5页](http://file4.renrendoc.com/view/0105d5894db6597dd7b1d8f7dd8be9bf/0105d5894db6597dd7b1d8f7dd8be9bf5.gif)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届淮北市重点中学高一上数学期末复习检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.设,,,则,,的大小关系()A. B.C. D.2.函数,则f(log23)=()A.3 B.6C.12 D.243.关于的不等式恰有2个整数解,则实数的取值范围是()A. B.C. D.4.下列四个函数中,在整个定义域内单调递减是A. B.C. D.5.已知,若函数恰有两个零点、(),那么一定有()A. B.C. D.6.若关于的一元二次不等式的解集为,则实数的取值范围是()A.或 B.C.或 D.7.已知向量满足,且,若向量满足,则的取值范围是A. B.C D.8.函数的部分图象如图所示,则的值为()A. B.C. D.9.已知第二象限角的终边上有异于原点的两点,,且,若,则的最小值为()A. B.3C. D.410.已知点.若点在函数的图象上,则使得的面积为2的点的个数为A.4 B.3C.2 D.1二、填空题:本大题共6小题,每小题5分,共30分。11.已知△ABC的三个顶点分别为A(2,3),B(-1,-2),C(-3,4),则BC边上的中线AD所在的直线方程为_____12.函数的最小值为_________________13.函数的单调减区间是__________14.写出一个同时具有下列三个性质的函数:___________.①为幂函数;②为偶函数;③在上单调递减.15.定义:如果函数在定义域内给定区间上存在,满足,则称函数是上的“平均值函数”,是它的一个均值点.若函数是上的平均值函数,则实数的取值范围是____16.在平面直角坐标系中,已知点A在单位圆上且位于第三象限,点A的纵坐标为,现将点A沿单位圆逆时针运动到点B,所经过的弧长为,则点B的坐标为___________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,在圆锥中,已知,圆的直径,是弧的中点,为的中点.(1)求异面直线和所成的角的正切值;(2)求直线和平面所成角的正弦值.18.在甲、乙两个盒子中分别装有标号为1,2,3,4的四个球,现从甲、乙两个盒子中各取出1个球,每个球被取出的可能性相等.(1)求取出的两个球上标号为相同数字的概率;(2)若两人分别从甲、乙两个盒子中各摸出一球,规定:两人谁摸出的球上标的数字大谁就获胜(若数字相同则为平局),这样规定公平吗?请说明理由.19.已知(其中a为常数,且)是偶函数.(1)求实数m的值;(2)证明方程有且仅有一个实数根,若这个唯一的实数根为,试比较与的大小.20.近来,国内多个城市纷纷加码布局“夜经济”,以满足不同层次的多元消费,并拉动就业、带动创业,进而提升区域经济发展活力.某夜市的一位工艺品售卖者,通过对每天销售情况的调查发现:该工艺品在过去的一个月内(以天计),每件的销售价格(单位:元)与时间(单位:天)的函数关系近似满足(为常数,且),日销售量(单位:件)与时间(单位:天)的部分数据如下表所示:已知第天的日销售收入为元(1)求的值;(2)给出以下四个函数模型:①;②;③;④请你根据上表中数据,从中选择你认为最合适的一种函数模型来描述日销售量与时间的变化关系,并求出该函数的解析式;(3)设该工艺品的日销售收入为(单位:元),求的最小值21.设为奇函数,为常数.(1)求的值;(2)证明:在内单调递增;(3)若对于上的每一个的值,不等式恒成立,求实数的取值范围.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解题分析】根据指数函数和对数函数的单调性比大小.【题目详解】由已知得,,且,,所以.故选:A.2、B【解题分析】由对数函数的性质可得,再代入分段函数解析式运算即可得解.【题目详解】由题意,,所以.故选:B.3、B【解题分析】由已知及一元二次不等式的性质可得,讨论a结合原不等式整数解的个数求的范围,【题目详解】由恰有2个整数解,即恰有2个整数解,所以,解得或,①当时,不等式解集为,因为,故2个整数解为1和2,则,即,解得;②当时,不等式解集为,因为,故2个整数解为,则,即,解得.综上所述,实数的取值范围为或.故选:B.4、C【解题分析】根据指数函数的性质判断,利用特殊值判断,利用对数函数的性质判断,利用偶函数的性质判断【题目详解】对于,,是指数函数,在整个定义域内单调递增,不符合题意;对于,,有,,不是减函数,不符合题意;对于,为对数函数,整个定义域内单调递减,符合题意;对于,,为偶函数,整个定义域内不是单调函数,不符合题意,故选C【题目点拨】本题主要考查指数函数的性质、单调性是定义,对数函数的性质以及偶函数的性质,意在考查综合利用所学知识解答问题的能力,属于中档题5、A【解题分析】构造两个函数和,根据两个函数的图象恰有两个交点,在同一坐标系内作出函数的图象,结合图象,即可求解.【题目详解】根据题意,构造两个函数和,则两个函数的图象恰有两个交点,在同一坐标系内作出函数的图象,如图所示,结合图象可得.故选:A.6、B【解题分析】由题意可得,解不等式即可求出结果.【题目详解】关于的一元二次不等式的解集为,所以,解得,故选:B.7、B【解题分析】由题意利用两个向量加减法的几何意义,数形结合求得的取值范围.【题目详解】设,根据作出如下图形,则当时,则点的轨迹是以点为圆心,为半径的圆,且结合图形可得,当点与重合时,取得最大值;当点与重合时,取得最小值所以的取值范围是故当时,的取值范围是故选:B8、C【解题分析】由函数的部分图象得到函数的最小正周期,求出,代入求出值,则函数的解析式可求,取可得的值.【题目详解】由图象可得函数的最小正周期为,则.又,则,则,,则,,,则,,则,.故选:C.【题目点拨】方法点睛:根据三角函数的部分图象求函数解析式的方法:(1)求、,;(2)求出函数的最小正周期,进而得出;(3)取特殊点代入函数可求得的值.9、B【解题分析】根据,得到,从而得到,进而得到,再利用“1”的代换以及基本不等式求解.【题目详解】解:因为,所以,又第二象限角的终边上有异于原点的两点,,所以,则,因为,所以,所以,当且仅当,即时,等号成立,故选:B10、A【解题分析】直线方程为即.设点,点到直线的距离为,因为,由面积为可得即,解得或或.所以点的个数有4个.故A正确考点:1直线方程;2点到线的距离二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】求出的坐标后可得的直线方程.【题目详解】的坐标为,故的斜率为,故直线的方程为即,故答案为:12、【解题分析】利用同角三角函数的基本关系,化简函数的解析式,配方利用二次函数的性质,求得y的最小值【题目详解】y=sin2x﹣2cosx+2=3﹣cos2x﹣2cosx=﹣(cosx+1)2+4,故当cosx=1时,y有最小值等于0,故答案为0【题目点拨】本题考查同角三角函数的基本关系的应用,二次函数的图象与性质,把函数配方是解题的关键13、【解题分析】,在上递增,在上递增,在上递增,在上递减,复合函数的性质,可得单调减区间是,故答案为.14、(或,,答案不唯一)【解题分析】结合幂函数的图象与性质可得【题目详解】由幂函数,当函数图象在一二象限时就满足题意,因此,或,等等故答案为:(或,,答案不唯一)15、##,##【解题分析】根据题意,方程,即在内有实数根,若函数在内有零点.首先满足,解得,或.对称轴为.对分类讨论即可得出【题目详解】解:根据题意,若函数是,上的平均值函数,则方程,即在内有实数根,若函数在内有零点则,解得,或(1),.对称轴:①时,,,(1),因此此时函数在内一定有零点.满足条件②时,,由于(1),因此函数在内不可能有零点,舍去综上可得:实数的取值范围是,故答案为:,16、【解题分析】设点A是角终边与单位圆的交点,根据三角函数的定义及平方关系求出,,再利用诱导公式求出,即可得出答案.【题目详解】解:设点A是角的终边与单位圆的交点,因为点A在单位圆上且位于第三象限,点A的纵坐标为,所以,,因为点A沿单位圆逆时针运动到点B,所经过的弧长为,所以,所以点的横坐标为,纵坐标为,即点B的坐标为.故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)2;(2)【解题分析】(1)由三角形中位线定理可得∥,则可得是异面直线和所成的角,然后在中求解即可,(2)直线与平面所成的角,应先作出直线在平面内的射影,则斜线与射影所成的角即为所求.过点O向平面PAC作垂线,则可证得即为直线与平面所成的角,进而求出其正弦值【题目详解】(1)因为分别是和的中点所以∥,所以异面直线和所成的角为,在中,,是弧的中点,为的中点,所以,因为平面,平面,所以,因为所以,(2)因为,为的中点,所以,因为平面,平面,所以,因为,所以平面因为平面,所以平面平面,在平面中,过作于,则平面,连结,则是在平面上的射影,所以是直线和平面所成的角在中,在中,18、(1)(2)这样规定公平,详见解析【解题分析】(1)利用列举法求得基本事件的总数,利用古典概型的概率计算公式,即可求解;(2)利用古典概型及其概率的计算公式,求得的概率,即可得到结论.【题目详解】由题意,设从甲、乙两个盒子中各取1个球,其数字分别为x、y.用表示抽取结果,可得,则所有可能的结果有16种,(1)设“取出的两个球上的标号相同”为事件A,则,事件A由4个基本事件组成,故所求概率.(2)设“甲获胜”为事件B,“乙获胜”为事件C,则,.可得,即甲获胜的概率是,乙获胜的概率也是,所以这样规定公平.【题目点拨】本题主要考查了古典概型的概率的计算及应用,其中解答中认真审题,利用列举法求得基本事件的总数是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题题.19、(1)(2)【解题分析】(1)由偶函数的定义得对任意的实数恒成立,进而整理得恒成立,故;(2)设,进而得唯一实数根,使得,即,故,再结合得得答案.【小问1详解】解:因为是偶函数,所以对于任意的实数,有,所以对任意的实数恒成立,即恒成立,所以,即,【小问2详解】解:设,因为当时,,所以在区间上无实数根,当时,因为,,所以,使得,又在上单调递减,所以存在唯一实数根;因为,所以,又,所以,所以.所以20、(1);(2);(3).【解题分析】(1)根据第10天的日销售收入,得到,即可求解;(2)由数据知先增后减,选择②,由对称性求得实数的值,再利用进而列出方程组,求得的值,从而求得函数的解析式;(3)根据(2)求得的解析式,然后利用基本不等式和函数的单调性分别求得各段的最小值,比较得到结论.【题目详解】(1)因为第10天的日销售收入为505元,所以,即,解得.(2)由表格中的数据知,当时间变换时,先增后减,函数模型:①;③;④都是单调函数,所以选择模型②:,由,可得,解得,由,解得,所以日销售量与时间的变化的关系式为.(3)由(2)知,所以,即,当时,由基本不等式,可得,当且仅当时,即时等号成立,当时,为减函数,所以函数的最小值为,综上可得,当时,函数取得最小值【题目点拨】求解所给函数模型解决实际问题的关注点:1、认清所给函数模型,弄清哪些量为待定系数;2、根据已知利用待
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年中国木材加工行业市场现状及投资态势分析报告(智研咨询)
- 《计算机网络基础与应用(第三版)》 课件 项目九 服务器操作系统
- 模型16、电场模型 (原卷版)-2025版高考物理解题技巧与模型讲义
- 二零二五年度门面铺面转租合同模板创新版
- 消化内科的病例分析课件
- 《信号与系统资料》课件
- 《粥天粥地》课件
- 《幼儿体育游戏》课件
- 历史外交事业的发展课件人教
- 2.2 基因在染色体上 【知识精研】高一下学期生物人教版必修2
- 2021年公务员国考《申论》真题(副省级)及参考答案(两套答案)
- 《钢铁是怎样炼成的》读书分享 课件
- 智能蓄电池远程核容系统运维管理指导意见
- 2025年日历( 每2个月一张打印版)
- 2024年全国执业兽医考试真题及答案解析
- 社区成人血脂管理中国专家共识(2024年)
- 广东省2024年普通高中学业水平合格性考试语文仿真模拟卷01(解析版)
- 信息科技重大版 七年级上册 互联网应用与创新 第1单元 单元教学设计 互联网时代
- CR200J动力集中动车组拖车制动系统讲解
- 2024年湖南高速铁路职业技术学院单招职业适应性测试题库参考答案
- 肾性高血压的护理
评论
0/150
提交评论