辽宁省大连市普兰店区第二中学2024届高一上数学期末监测试题含解析_第1页
辽宁省大连市普兰店区第二中学2024届高一上数学期末监测试题含解析_第2页
辽宁省大连市普兰店区第二中学2024届高一上数学期末监测试题含解析_第3页
辽宁省大连市普兰店区第二中学2024届高一上数学期末监测试题含解析_第4页
辽宁省大连市普兰店区第二中学2024届高一上数学期末监测试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

辽宁省大连市普兰店区第二中学2024届高一上数学期末监测试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.设常数使方程在区间上恰有三个解且,则实数的值为()A. B.C. D.2.将函数的图象向左平移个单位后,所得图象对应的函数是()A. B.C. D.3.已知集合,,若,则实数a值的集合为()A. B.C. D.4.设函数满足,的零点为,则下列选项中一定错误的是()A. B.C. D.5.函数在一个周期内的图象如图所示,则其表达式为A. B.C. D.6.已知集合A={0,1},B={-1,0},则A∩B=()A.0, B.C. D.7.已知是定义在上的单调函数,满足,则函数的零点所在区间为()A. B.C. D.8.已知函数,则的零点所在区间为A. B.C. D.9.已知命题,则命题的否定为()A. B.C. D.10.若函数f(x)满足“对任意x1,x2∈(0,+∞),当x1<x2时,都有f(x1)>f(x2)”,则f(x)解析式可以是()A.f(x)=(x-1)2 B.f(x)=exC.f(x)= D.f(x)=ln(x+1)二、填空题:本大题共6小题,每小题5分,共30分。11.若函数的图象关于直线对称,则的最小值是________.12.已知半径为3的扇形面积为,则这个扇形的圆心角为________13.设函数不等于0,若,则________.14.若,则_____________.15.设定义在上的函数同时满足以下条件:①;②;③当时,,则=________.16.若函数在[-1,2]上的最大值为4,最小值为m,且函数在上是增函数,则a=______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,在平面直角坐标系中,角,的始边均为轴正半轴,终边分别与圆交于,两点,若,,且点的坐标为(1)若,求实数的值;(2)若,求的值18.如图,已知正方形ABCD的边长为2,分别取BC,CD的中点E,F,连接AE,EF,AF,以AE,EF,FA为折痕进行折叠,使点B,C,D重合于一点P.(1)求证:;(2)求三棱锥的体积19.已知,求,的值.20.如图,在直三棱柱中,已知,,设的中点为,求证:(1);(2).21.已知,,(1)用,表示;(2)求

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解题分析】解:分别作出y=cosx,x∈(,3π)与y=m的图象,如图所示,结合图象可得则﹣1<m<0,故排除C,D,再分别令m=﹣,m=﹣,求出x1,x2,x3,验证x22=x1•x3是否成立;【题目详解】解:分别作出y=cosx,x∈(,3π)与y=m的图象,如图所示,方程cosx=m在区间(,3π)上恰有三个解x1,x2,x3(x1<x2<x3),则﹣1<m<0,故排除C,D,当m=﹣时,此时cosx=﹣在区间(,3π),解得x1=π,x2=π,x3=π,则x22=π2≠x1•x3=π2,故A错误,当m=﹣时,此时cosx=﹣在区间(,3π),解得x1=π,x2=π,x3=π,则x22=π2=x1•x3=π2,故B正确,故选B【题目点拨】本题考查了三角函数的图象和性质,考查了数形结合的思想和函数与方程的思想,属于中档题.2、D【解题分析】根据图像平移过程,写出平移后的函数解析式即可.【题目详解】由题设,.故选:D3、D【解题分析】,可以得到,求出集合A的子集,这样就可以求出实数值集合.【题目详解】,的子集有,当时,显然有;当时,;当时,;当,不存在符合题意,实数值集合为,故选:D.【题目点拨】本题考查了通过集合的运算结果,得出集合之间的关系,求参数问题.重点考查了一个集合的子集,本题容易忽略空集是任何集合的子集这一结论.4、C【解题分析】根据函数的解析式,结合零点的存在定理,进行分类讨论判定,即可求解.【题目详解】由题意,函数的定义域为,且的零点为,即,解得,又因为,可得中,有1个负数、两个正数,或3个都负数,若中,有1个负数、两个正数,可得,即,根据零点的存在定理,可得或;若中,3个都是负数,则满足,即,此时函数的零点.故选:C.5、A【解题分析】由图象得,周期,所以,故又由条件得函数图象的最高点为,所以,故,又,所以,故函数的解析式为.选A6、B【解题分析】利用交集定义直接求解【题目详解】解:∵集合A={0,1},B={-1,0},∴A∩B={0}故选B【题目点拨】本题考查交集的求法,考查交集定义,是基础题7、C【解题分析】设,即,再通过函数的单调性可知,即可求出的值,得到函数的解析式,然后根据零点存在性定理即可判断零点所在区间【题目详解】设,即,,因为是定义在上的单调函数,所以由解析式可知,在上单调递增而,,故,即因为,,由于,即有,所以故,即的零点所在区间为故选:C【题目点拨】本题主要考查函数单调性的应用,零点存在性定理的应用,意在考查学生的转化能力,属于较难题8、B【解题分析】根据函数的零点判定定理可求【题目详解】连续函数在上单调递增,,,的零点所在的区间为,故选B【题目点拨】本题主要考查了函数零点存在定理的应用,熟记定理是关键,属于基础试题9、D【解题分析】由特称(存在)量词命题的否定是全称量词命题直接可得.【题目详解】由特称(存在)量词命题的否定是全称量词命题直接可得:命题的否定为:.故选:D10、C【解题分析】根据条件知,f(x)在(0,+∞)上单调递减对于A,f(x)=(x-1)2在(1,+∞)上单调递增,排除A;对于B,f(x)=ex在(0,+∞)上单调递增,排除B;对于C,f(x)=在(0,+∞)上单调递减,C正确;对于D,f(x)=ln(x+1)在(0,+∞)上单调递增,排除D.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】根据正弦函数图象的对称性求解.【题目详解】依题意可知,得,所以,故当时,取得最小值.故答案为:.【题目点拨】本题考查三角函数的对称性.正弦函数的对称轴方程是,对称中心是12、【解题分析】由扇形的面积公式直接求解.【题目详解】由扇形面积公式,可得圆心角,故答案为:.【题目点拨】(1)在弧度制下,计算扇形的面积和弧长比在角度制下更方便、简捷(2)求扇形面积的最值应从扇形面积出发,在弧度制下使问题转化为关于α的不等式或利用二次函数求最值的方法确定相应最值.13、【解题分析】令,易证为奇函数,根据,可得,再根据,由此即可求出结果.【题目详解】函数的定义域为,令,则,即,所以为奇函数;又,所以,所以.故答案为:.14、【解题分析】平方得15、【解题分析】利用周期性和奇偶性,直接将的值转化到上的函数值,再利用解析式计算,即可求出结果【题目详解】依题意知:函数为奇函数且周期为2,则,,即.【题目点拨】本题主要考查函数性质——奇偶性和周期性的应用,以及已知解析式,求函数值,同时,考查了转化思想的应用16、【解题分析】当时,有,此时,此时为减函数,不合题意.若,则,故,检验知符合题意三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)【解题分析】(1)根据题中条件,先由二倍角的正切公式,求出,再根据任意角的三角函数,即可求出的值;(2)由题中条件,根据两角差的正切公式,先得到,再由同角三角函数基本关系,求出和,利用二倍角公式,以及两角和的余弦公式,即可求出结果.【题目详解】(1)由题意可得,∴,或∵,∴,即,∴(2)∵,,,∴,,∴,,∴18、(1)证明见解析(2)【解题分析】(1)通过,证明平面,然后证明;(2)利用,求出几何体的体积【小问1详解】证明:,即,平面,平面,又平面,所以;【小问2详解】由(1)知平面,19、见解析【解题分析】分角为第三和第四象限角两种情况讨论,结合同角三角函数的基本关系可得解.【题目详解】因为,,所以是第三或第四象限角.由得.如果是第三象限角,那么,于是,从而;如果是第四象限角,那么,.综上所述,当是第三象限角时,,;当是第四象限角时,,.【题目点拨】本题考查利用同角三角函数的基本关系求值,考查计算能力,属于基础题.20、⑴见解析;⑵见解析.【解题分析】(1)要证明线面平行,转证线线平行,在△AB1C中,DE为中位线,易得;(2)要证线线垂直,转证线面垂直平面,易证,从而问题得以解决.试题解析:⑴在直三棱柱中,平面,且矩形是正方形,为的中点,又为的中点,,又平面,平面,平面⑵在直三棱柱中,平面,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论