四川省武胜烈面中学2024届数学高一上期末监测试题含解析_第1页
四川省武胜烈面中学2024届数学高一上期末监测试题含解析_第2页
四川省武胜烈面中学2024届数学高一上期末监测试题含解析_第3页
四川省武胜烈面中学2024届数学高一上期末监测试题含解析_第4页
四川省武胜烈面中学2024届数学高一上期末监测试题含解析_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

四川省武胜烈面中学2024届数学高一上期末监测试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.表示集合中整数元素的个数,设,,则()A.5 B.4C.3 D.22.已知函数()的部分图象如图所示,则的值分别为A. B.C. D.3.若,则a,b,c的大小关系是()A. B.C. D.4.已知函数,则()A.5 B.2C.0 D.15.函数y=的单调递减区间是()A.(-∞,1) B.[1,+∞)C.(-∞,-1) D.(-1,+∞)6.已知,则的最小值为()A. B.2C. D.47.已知曲线的图像,,则下面结论正确的是()A.把上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线B.把上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C.把上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线D.把上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线8.设,,,则的大小关系是()A. B.C. D.9.已知函数,且在内有且仅有两个不同的零点,则实数的取值范围是A. B.C. D.10.已知函数的定义域为,则函数的定义域为()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.函数的定义域为__________12.比较大小:______cos()13.计算____________14.已知直线,互相平行,则__________.15.函数的定义域是__________,值域是__________.16.若三棱锥中,,其余各棱长均为5,则三棱锥内切球的表面积为_____三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知集合,.(1)当时,求.(2)若,求实数m的取值范围.18.已知是定义在上的偶函数,且时,(1)求函数的表达式;(2)判断并证明函数在区间上的单调性19.已知函数.求:(1)函数的单调递减区间,对称轴,对称中心;(2)当时,函数的值域20.在非空集合①,②,③这三个条件中任选一个,补充在下面问题中,已知集合______,使“”是“”的充分不必要条件,若问题中a存在,求a的值;若a不存在,请说明理由.(如果选择多个条件分别解答,按第一个解答计分)21.已知函数(1)试判断函数的奇偶性并证明;

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解题分析】首先求出集合,再根据交集的定义求出,即可得解;【题目详解】解:因为,,所以,则,,,所以;故选:C2、B【解题分析】由条件知道:均是函数的对称中心,故这两个值应该是原式子分母的根,故得到,由图像知道周期是,故,故,再根据三角函数的对称中心得到,故如果,根据,得到故答案为B点睛:根据函数的图像求解析式,一般要考虑的是图像中的特殊点,代入原式子;再就是一些常见的规律,分式型的图像一般是有渐近线的,且渐近线是分母没有意义的点;还有常用的是函数的极限值等等方法3、A【解题分析】根据题意,以及指数和对数的函数的单调性,来确定a,b,c的大小关系.【题目详解】解:是增函数,是增函数.,又,【题目点拨】本题考查三个数的大小的求法,考查指数函数和对数函数性质等基础知识,考查运算求解能力,是基础题.根据题意,构造合适的对数函数和指数函数,利用指数对数函数的单调性判定的范围是关键.4、C【解题分析】由分段函数,选择计算.【题目详解】由题意可得.故选:C.【题目点拨】本题考查分段函数的求值,属于简单题.5、A【解题分析】令t=-x2+2x﹣1,则y,故本题即求函数t的增区间,再结合二次函数的性质可得函数t的增区间【题目详解】令t=-x2+2x﹣1,则y,故本题即求函数t的增区间,由二次函数的性质可得函数t的增区间为(-∞,1),所以函数的单调递减区间为(-∞,1).故答案为A【题目点拨】本题主要考查指数函数和二次函数的单调性,考查复合函数的单调性,意在考查学生对这些知识的掌握水平和分析推理能力.6、C【解题分析】根据给定条件利用均值不等式直接计算作答.【题目详解】因为,则,当且仅当,即时取“=”,所以的最小值为.故选:C7、D【解题分析】先将转化为,再根据三角函数图像变换的知识得出正确选项.【题目详解】对于曲线,,要得到,则把上各点的横坐标缩短到原来的倍,纵坐标不变,得到,再把得到的曲线向左平移个单位长度,得到,即得到曲线.故选:D.8、C【解题分析】根据对数函数和幂函数单调性可比较出大小关系.【题目详解】,;,,,即,又,.故选:C.9、C【解题分析】由,即,分别作出函数和的图象如图,由图象可知表示过定点的直线,当过时,此时两个函数有两个交点,当过时,此时两个函数有一个交点,所以当时,两个函数有两个交点,所以在内有且仅有两个不同的零点,实数的取值范围是,故选C.10、C【解题分析】解不等式即得函数的定义域.【题目详解】由题得,解之得,所以函数的定义域为.故答案为C【题目点拨】本题主要考查复合函数的定义域的求法,考查具体函数的定义域的求法和对数函数的单调性,意在考查学生对这些知识的掌握水平和分析推理能力.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】真数大于0求定义域.【题目详解】由题意得:,解得:,所以定义域为.故答案为:12、>【解题分析】利用诱导公式化简后,根据三角函数的单调性进行判断即可【题目详解】cos(π)=cos(﹣4π)=cos()=cos,cos(π)=cos(﹣4π)=cos()=cos,∵y=cosx在(0,π)上为减函数,∴coscos,即cos(π)>cos(π)故答案为>【题目点拨】本题主要考查函数的大小比较,根据三角函数的诱导公式以及三角函数的单调性是解决本题的关键,属于基础题13、5【解题分析】由分数指数幂的运算及对数的运算即可得解.【题目详解】解:原式,故答案为:5.【题目点拨】本题考查了分数指数幂的运算及对数的运算,属基础题.14、【解题分析】由两直线平行的充要条件可得:,即:,解得:,当时,直线为:,直线为:,两直线重合,不合题意,当时,直线为:,直线为:,两直线不重合,综上可得:.15、①.②.【解题分析】解不等式可得出原函数的定义域,利用二次函数的基本性质可得出原函数的值域.详解】对于函数,有,即,解得,且.因此,函数的定义域为,值域为.故答案为:;.16、【解题分析】由题意得,易知内切球球心到各面的距离相等,设为的中点,则在上且为的中点,在中,,所以三棱锥内切球的表面积为三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解题分析】(1)利用集合的交集运算即可求解;(2)由集合的基本运算得出集合的包含关系,进而求出实数m的取值范围.【小问1详解】解:时,;又;【小问2详解】解:由得所以解得:所以实数m的取值范围为:18、(1)(2)单调减函数,证明见解析【解题分析】(1)设,则,根据是偶函数,可知,然后分两段写出函数解析式即可;(2)利用函数单调性的定义,即可判断函数的单调性,并可证明结果【小问1详解】解:设,则,,因为函数为偶函数,所以,即,所以【小问2详解】解:设,,∵,∴,,∴,∴在为单调减函数19、(1)单调递减区间为;对称轴为,;对称中心为,;(2)【解题分析】(1)首先化简函数解析式得到,然后结合函数的图象与性质即可求出单调递减区间,对称轴和对称中心;(2)由求得,即可求出值域.【题目详解】(1)化简可得,由,,可得,,∴函数的单调递减区间为,令,可得,故函数的对称轴为,;令,得,故函数的对称中心为,(2)当时,,∴,∴,∴函数的值域为20、答案见解析【解题分析】由题设可得A不为空集,,根据所选的条件,结合充分不必要关系判断A、B的包含关系,进而列不等式组求参数范围.【题目详解】由题意知,A不为空集,i.如果选①,因为“”是“”的充分不必要条件,所以A是B的真子集,则,解得,所以实数a的取值范围是;ii.如果选②,因为“”是“”的充分不必要条件,所以A是B的真子集,则,此时,所以不存在a使“”是“”的充分不必要条件;iii.如果选③,因为“”是“”的充分不必要条件所以A是B的真子集,则,解得,此时无解不存在a使“”是“”的充分不必要条件21、(1)为奇函数;证明见解析;(2).【解题分析】(1)利用奇函数的定义即证;(2)由题可得当时,为增函数,法一利用对勾函数的性质可得,即求;法二利用函数单调性的定义可得成立,即求.【小问1详解】当时,,则,当;当时,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论