版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
陕西省咸阳市乾县二中2024届数学高一上期末质量跟踪监视模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.下列函数中,在定义域内既是单调函数,又是奇函数的是()A. B.C. D.2.已知指数函数(,且),且,则的取值范围()A. B.C. D.3.设是两个不同的平面,是一条直线,以下命题正确的是A.若,则 B.若,则C.若,则 D.若,则4.已知正实数x,y,z,满足,则()A. B.C. D.5.为了得到函数的图象,可以将函数的图象()A.向左平移个单位长度 B.向右平移个单位长度C.向左平移个单位长度 D.向右平移个单位长度6.把正方形沿对角线折起,当以,,,四点为顶点的三棱锥体积最大时,直线和平面所成角的大小为()A. B.C. D.7.已知角终边经过点,则的值分别为A. B.C. D.8.设函数,若是奇函数,则的值是()A.2 B.C.4 D.9.2020年12月17日凌晨,嫦娥五号返回器携带月球样品在内蒙古四子王旗预定区域安全着陆-嫦娥五号返回:舱之所以能达到如此髙的再入精度,主要是因为它采用弹跳式返回弹道,实现了减速和再入阶段弹道调整,这与“打水漂”原理类似(如图所示).现将石片扔向水面,假设石片第一次接触水面的速率为100m/s,这是第一次“打水漂”,然后石片在水面上多次“打水漂”,每次“打水漂”的速率为上一次的90%,若要使石片的速率低于60m/s,则至少还需要“打水漂”的次数为()(参考数据:取lg2≈0.301,lg3≈0.477)A.4 B.5C.6 D.710.函数f(x)=x2-3x-4的零点是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.若,且,则的值为__________12.若,则的终边所在的象限为______13.已知样本9,10,11,,的平均数是10,标准差是,则______,______.14._____________15.已知函数(,且)的图象恒过定点,且点在幂函数的图象上,则__________.16.若函数在区间上单调递增,则实数的取值范围是__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图5,在四棱锥P-ABCD中,PA⊥平面ABCD,AB=4,BC=3,AD=5,∠DAB=∠ABC=90°,E是CD的中点.(Ⅰ)证明:CD⊥平面PAE;(Ⅱ)若直线PB与平面PAE所成的角和PB与平面ABCD所成的角相等,求四棱锥P-ABCD的体积.18.计算求值:(1)(2)若,求的值.19.已知函数的图象过点.(Ⅰ)求实数的值;(Ⅱ)若不等式恒成立,求实数的取值范围;(Ⅲ)若函数,,是否存在实数使得的最小值为,若存在请求出的值;若不存在,请说明理由.20.在三棱柱ABC-A1B1C1中,AB⊥AC,B1C⊥平面ABC,E,F分别是AC,B1C的中点(1)求证:EF∥平面AB1C1;(2)求证:平面AB1C⊥平面ABB121.已知函数.(1)当有是实数解时,求实数的取值范围;(2)若,对一切恒成立,求实数的取值范围.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解题分析】根据解析式可直接判断出单调性和奇偶性.【题目详解】对于A:为奇函数且在上单调递增,满足题意;对于B:为非奇非偶函数,不合题意;对于C:为非奇非偶函数,不合题意;对于D:在整个定义域内不具有单调性,不合题意.故选:A.2、A【解题分析】根据指数函数的单调性可解决此题【题目详解】解:由指数函数(,且),且根据指数函数单调性可知所以,故选:A3、C【解题分析】对于A、B、D均可能出现,而对于C是正确的4、A【解题分析】根据指数函数和对数函数的图像比较大小即可.【题目详解】令,则,,,由图可知.5、D【解题分析】,据此可知,为了得到函数的图象,可以将函数的图象向右平移个单位长度.本题选择D选项.6、C【解题分析】当平面平面时,三棱锥体积最大,由此能求出结果【题目详解】解:如图,当平面平面时,三棱锥体积最大取的中点,则平面,故直线和平面所成的角为,故选:【题目点拨】本题考查直线与平面所成角的求法,解题时要注意空间思维能力的培养,属于中档题7、C【解题分析】,所以,,选C.8、D【解题分析】根据为奇函数,可求得,代入可得答案.【题目详解】若是奇函数,则,所以,,.故选:D.9、C【解题分析】设石片第n次“打水漂”时的速率为vn,再根据题设列不等式求解即可.【题目详解】设石片第n次“打水漂”时的速率为vn,则vn=.由,得,则,所以,故,又,所以至少需要“打水漂”的次数为6.故选:C10、D【解题分析】直接利用函数零点定义,解即可.【题目详解】由,解得或,函数零点是.故选:.【题目点拨】本题主要考查的是函数零点的求法,直接利用定义可以求解,是基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】∵且,∴,∴,∴cosα+sinα=0,或cosα−sinα=(不合题意,舍去),∴,故答案为−1.12、第一或第三象限【解题分析】将表达式化简,,二者相等,只需满足与同号即可,从而判断角所在的象限.【题目详解】由,,若,只需满足,即与同号,因此的终边在第一或第三象限.故答案为:第一或第三象限.13、①.20②.96【解题分析】先由平均数的公式列出x+y=20,然后根据方差的公式列方程,求出x和y的值即可求出xy的值.【题目详解】根据平均数及方差公式,可得:化简得:,,或则,故答案为:20;96【题目点拨】本题主要考查了平均数和方等概念,以及解方程组,属于容易题.14、【解题分析】利用指数与对数的运算性质,进行计算即可【题目详解】.【题目点拨】本题考查了指数与对数的运算性质,需要注意,属于基础题15、【解题分析】先求出定点的坐标,再代入幂函数,即可求出解析式.【题目详解】令可得,此时,所以函数(,且)的图象恒过定点,设幂函数,则,解得,所以,故答案为:【题目点拨】关键点点睛:本题的关键点是利用指数函数的性质和图象的特点得出,设幂函数,代入即可求得,.16、【解题分析】按a值对函数进行分类讨论,再结合函数的性质求解作答.【题目详解】当时,函数在R上单调递增,即在上递增,则,当时,函数是二次函数,又在上单调递增,由二次函数性质知,,则有,解得,所以实数的取值范围是.故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)证明略(2)【解题分析】(Ⅰ)要证平面,由已知平面,已经有,因此在直角梯形中证明即可,通过计算得,而是中点,则有;(Ⅱ)PB与平面ABCD所成的角是,下面关键是作出PB与平面PAE所成的角,由(Ⅰ)作,分别与相交于,连接,则是PB与平面PAE所成的角,由这两个角相等,可得,同样在直角梯形中可计算出,也即四棱锥P-ABCD的高,体积可得.另外也可建立空间直角坐标系,通过空间向量法求得结论,第(Ⅱ)小题中关键是求点的坐标,注意这里直线与平面所成的角相等转化为直线与平面的法向量的夹角相等试题解析:解法1(Ⅰ如图(1)),连接AC,由AB=4,,是的中点,所以所以而内的两条相交直线,所以CD⊥平面PAE(Ⅱ)过点B作由(Ⅰ)CD⊥平面PAE知,BG⊥平面PAE.于是为直线PB与平面PAE所成的角,且由知,为直线与平面所成的角由题意,知因为所以由所以四边形是平行四边形,故于是在中,所以于是又梯形的面积为所以四棱锥的体积为解法2:如图(2),以A为坐标原点,所在直线分别为建立空间直角坐标系.设则相关的各点坐标为:(Ⅰ)易知因为所以而是平面内的两条相交直线,所以(Ⅱ)由题设和(Ⅰ)知,分别是,的法向量,而PB与所成的角和PB与所成的角相等,所以由(Ⅰ)知,由故解得又梯形ABCD的面积为,所以四棱锥的体积为.考点:线面垂直的判断,棱锥的体积18、(1)(2)【解题分析】(1)利用指数和对数运算法则直接计算可得结果;(2)分子分母同除即可求得结果.【小问1详解】原式.小问2详解】,.19、(1)(2)(3)【解题分析】(Ⅰ)根据图象过点,代入函数解析式求出k的值即可;(Ⅱ)令,则命题等价于,根据函数的单调性求出a的范围即可;(Ⅲ)根据二次函数的性质通过讨论m的范围,结合函数的最小值,求出m的值即可【题目详解】(I)函数的图象过点(II)由(I)知恒成立即恒成立令,则命题等价于而单调递增即(III),令当时,对称轴①当,即时,不符舍去.②当时,即时.符合题意.综上所述:【题目点拨】本题考查了对数函数的性质,考查函数的单调性、最值问题,考查转化思想以及分类讨论思想,换元思想,是一道中档题20、(1)证明详见解析;(2)证明详见解析.【解题分析】(1)通过证明,来证得平面.(2)通过证明平面,来证得平面平面.【题目详解】(1)由于分别是的中点,所以.由于平面,平面,所以平面.(2)由于平面,平面,所以.由于,所以平面,由于平面,所以平面平面.【题目点拨】本小题主要考查线面平行证明,考查面面垂直的证明,属于中档题.21、(1);(2)【解题分析】(1)由题意可知实数的取值范围为函数的值域,结合三角函数的范围和二次函数的性质可知时函数取得最小值,当时函数取得最大值,实数的取值范围是.(2)由题意可得时函数取得最大值,当时函数取得最小值,原问题等价于,求解不等式组可得实数的取值范围是.试题解析:(1)因为,可化
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年酒店会议室场地租赁及旅游套餐合同2篇
- 二零二五年户外运动俱乐部装修设计合同2篇
- 二零二五年第3章电子发票电子合同操作规范3篇
- 二零二五版文化创意产业试用期员工激励合同3篇
- 二零二五年度物业经理竞聘选拔合同3篇
- 二零二五版环保型厂房买卖合同范本3篇
- 幼儿园2025年度教学计划设计与执行合同3篇
- 二零二五年综合性商业地产合作开发合同范本3篇
- 二零二五版无抵押个人宠物医疗借款合同2篇
- 二零二五年甲乙间设备租赁借款合同6篇
- 无脊椎动物课件-2024-2025学年人教版生物七年级上册
- 2024年银发健康经济趋势与展望报告:新老人、新需求、新生态-AgeClub
- 2024年江西省“振兴杯”家务服务员竞赛考试题库(含答案)
- 吉林省2024年中考物理试题(含答案)
- 长链氯化石蜡
- 小学六年级数学解方程计算题
- 春节英语介绍SpringFestival(课件)新思维小学英语5A
- 进度控制流程图
- 2023年江苏省南京市中考化学真题
- 【阅读提升】部编版语文五年级下册第四单元阅读要素解析 类文阅读课外阅读过关(含答案)
- 现在完成时练习(短暂性动词与延续性动词的转换)
评论
0/150
提交评论