




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
四川省成都市高新实验中学2024届九年级数学第一学期期末综合测试试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.已知,则下列结论一定正确的是()A. B. C. D.2.如图,已知⊙O的半径为13,弦AB长为24,则点O到AB的距离是()A.6 B.5 C.4 D.33.在△ABC中,点D、E分别在AB,AC上,DE∥BC,AD:DB=1:2,,则=(),A. B. C. D.4.下列说法正确的是().A.“购买1张彩票就中奖”是不可能事件B.“概率为0.0001的事件”是不可能事件C.“任意画一个三角形,它的内角和等于180°”是必然事件D.任意掷一枚质地均匀的硬币10次,正面向上的一定是5次5.用相同的小立方块搭成的几何体的三种视图都相同(如图所示),则搭成该几何体的小立方块个数是()A.3个 B.4个 C.5个 D.6个6.已知点A(,),B(1,),C(2,)是函数图象上的三点,则,,的大小关系是()A.<< B.<< C.<< D.无法确定7.如图,在Rt△ABC中,∠C=90°,AC=6,BC=8,将它绕着BC中点D顺时针旋转一定角度(小于90°)后得到△A′B′C′,恰好使B′C′∥AB,A'C′与AB交于点E,则A′E的长为()A.3 B.3.2 C.3.5 D.3.68.在平面直角坐标系中,以点(3,2)为圆心、2为半径的圆,一定()A.与x轴相切,与y轴相切 B.与x轴相切,与y轴相离C.与x轴相离,与y轴相切 D.与x轴相离,与y轴相离9.抛物线与y轴的交点为()A. B. C. D.10.抛物线y=x2﹣4x+2不经过()A.第一象限 B.第二象限 C.第三象限 D.第四象限二、填空题(每小题3分,共24分)11.在Rt△ABC中,∠C是直角,sinA=,则cosB=__________12.如图,在平面直角坐标系中,正方形OABC与正方形ODEF是位似图形,点O为位似中心,位似比为2:3,点B、E在第一象限,若点A的坐标为(4,0),则点E的坐标是_____.13.关于的一元二次方程有两个不相等的实数根,则的取值范围是_________.14.已知Rt△ABC中,AC=3,BC=4,以C为圆心,以r为半径作圆.若此圆与线段AB只有一个交点,则r的取值范围为_____.15.某校九年级学生毕业时,每个同学都将自己的相片向全班其他同学各送一张留作纪念,全班共送了1640张相片.如果全班有x名学生,根据题意,列出方程为________.16.如图,某海防响所发现在它的西北方向,距离哨所400米的处有一般船向正东方向航行,航行一段时间后到达哨所北偏东方向的处,则此时这般船与哨所的距离约为________米.(精确到1米,参考数据:,)17.如图,在Rt△ABC中,∠ACB=90°,D、E、F分别是AB、BC、CA的中点,若CD=5cm,则EF=_______cm.18.已知甲、乙两组数据的折线图如图,设甲、乙两组数据的方差分别为S甲2、S乙2,则S甲2__S乙2(填“>”、“=”、“<”)三、解答题(共66分)19.(10分)在一不透明的口袋中装有3个球,这3个球分别标有1,2,3,这些球除了数字外都相同.(1)如果从袋子中任意摸出一个球,那么摸到标有数字是2的球的概率是多少?(2)小明和小亮玩摸球游戏,游戏的规则如下:先由小明随机摸出一个球,记下球的数字后放回,搅匀后再由小亮随机摸出一个球,记下数字.谁摸出的球的数字大,谁获胜.请你用树状图或列表法分析游戏规则对双方是否公平?并说明理由.20.(6分)如图①,在平行四边形中,以O为圆心,为半径的圆与相切于点B,与相交于点D.(1)求的度数.(2)如图②,点E在上,连结与交于点F,若,求的度数.21.(6分)如图,在△ABC中,CD⊥AB,垂足为点D.若AB=12,CD=6,tanA=,求sinB+cosB的值.22.(8分)已知:点M是平行四边形ABCD对角线AC所在直线上的一个动点(点M不与点A、C重合),分别过点A、C向直线BM作垂线,垂足分别为点E、F,点O为AC的中点.⑴如图1,当点M与点O重合时,OE与OF的数量关系是.⑵直线BM绕点B逆时针方向旋转,且∠OFE=30°.①如图2,当点M在线段AC上时,猜想线段CF、AE、OE之间有怎样的数量关系?请你写出来并加以证明;②如图3,当点M在线段AC的延长线上时,请直接写出线段CF、AE、OE之间的数量关系.23.(8分)阅读下面材料后,解答问题.分母中含有未知数的不等式叫分式不等式.如:,等.那么如何求出它们的解集呢?根据我们学过的有理数除法法则可知,两数相除,同号得正,异号得负,其字母表达式为:(1)若,,则,若,,则;(2)若,,则,若,,则.反之,(1)若,则或(3)若,则__________或_____________.根据上述规律,求不等式,的解集,方法如下:由上述规律可知,不等式,转化为①或②解不等式组①得,解不等式组②得.∴不等式,的解集是或.根据上述材料,解决以下问题:A、求不等式的解集B、乘法法则与除法法则类似,请你类比上述材料内容,运用乘法法则,解决以下问题:求不等式的解集.24.(8分)如图,抛物线与轴交于、两点,与轴交于点,且.(1)求抛物线的解析式及顶点的坐标;(2)判断的形状,证明你的结论;(3)点是抛物线对称轴上的一个动点,当周长最小时,求点的坐标及的最小周长.25.(10分)如图,在▱ABCD中,点E是边AD上一点,延长CE到点F,使∠FBC=∠DCE,且FB与AD相交于点G.(1)求证:∠D=∠F;(2)用直尺和圆规在边AD上作出一点P,使△BPC∽△CDP,并加以证明.(作图要求:保留痕迹,不写作法.)26.(10分)已知抛物线y=ax2+bx+c经过点A(﹣2,0),B(3,0),与y轴负半轴交于点C,且OC=OB.(1)求抛物线的解析式;(2)在y轴负半轴上存在一点D,使∠CBD=∠ADC,求点D的坐标;(3)点D关于直线BC的对称点为D′,将抛物线y=ax2+bx+c向下平移h个单位,与线段DD′只有一个交点,直接写出h的取值范围.
参考答案一、选择题(每小题3分,共30分)1、D【分析】应用比例的基本性质,将各项进行变形,并注意分式的性质y≠0,这个条件.【题目详解】A.由,则x与y的比例是2:3,只是其中一特殊值,故此项错误;B.由,可化为,且y≠0,故此项错误;C.,化简为,由B项知故此项错误;D.,可化为,故此项正确;故答案选D【题目点拨】此题主要考查了比例的基本性质,正确运用已知变形是解题关键.2、B【解题分析】过点O作OC⊥AB,垂足为C,则有AC=AB=×24=12,在Rt△AOC中,∠ACO=90°,AO=13,∴OC==5,即点O到AB的距离是5.3、A【分析】根据DE∥BC得到△ADE∽△ABC,再结合相似比是AD:AB=1:3,因而面积的比是1:1.【题目详解】解:如图:∵DE∥BC,∴△ADE∽△ABC,∵AD:DB=1:2,∴AD:AB=1:3,∴S△ADE:S△ABC=1:1.故选:A.【题目点拨】本题考查的是相似三角形的判定与性质,熟知相似三角形面积的比等于相似比的平方是解答此题的关键.4、C【解题分析】试题解析:A.“购买1张彩票就中奖”是不可能事件,错误;B.“概率为0.0001的事件”是不可能事件,错误;C.“任意画一个三角形,它的内角和等于180°”是必然事件,正确;D.任意掷一枚质地均匀的硬币10次,正面向上的一定是5次,错误.故选C.5、B【分析】从俯视图中可以看出最底层小正方体的个数及形状,从主视图和左视图可以看出每一层小正方体的层数和个数,从而算出总的个数.【题目详解】依题意可得所以需要4块;故选:B【题目点拨】考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.6、B【分析】直接根据反比例函数的性质排除选项即可.【题目详解】因为点A(,),B(1,),C(2,)是函数图象上的三点,,反比例函数的图像在二、四象限,所以在每一象限内y随x的的增大而增大,即;故选B.【题目点拨】本题主要考查反比例函数的性质,熟练掌握反比例函数的性质是解题的关键.7、D【解题分析】如图,过点D作DF⊥AB,可证四边形EFDC'是矩形,可得C'E=DF,通过证明△BDF∽△BAC,可得,可求DF=2.4=C'E,即可求解.【题目详解】如图,过点D作DF⊥AB,∵∠C=90°,AC=6,BC=8,∴AB==10,∵将Rt△ABC绕着BC中点D顺时针旋转一定角度(小于90°)后得到△A′B′C′,∴AC=A'C'=6,∠C=∠C'=90°,CD=BD=4,∵AB∥C'B'∴∠A'EB=∠A'C'B'=90°,且DF⊥AB,∴四边形EFDC'是矩形,∴C'E=DF,∵∠B=∠B,∠DFB=∠ACB=90°,∴△BDF∽△BAC∴,∴∴DF=2.4=C'E,∴A'E=A'C'﹣C'E=6﹣2.4=3.6,故选:D.【题目点拨】此题主要考查相似三角形的判定与性质,解题的关键是熟知旋转的定义、矩形的性质及相似三角形的判定与性质.8、B【分析】本题应将该点的横纵坐标分别与半径对比,大于半径时,则坐标轴与该圆相离;若等于半径时,则坐标轴与该圆相切.【题目详解】∵是以点(2,3)为圆心,2为半径的圆,则有2=2,3>2,∴这个圆与x轴相切,与y轴相离.故选B.【题目点拨】本题考查了直线与圆的位置关系、坐标与图形性质.直线与圆相切,直线到圆的距离等于半径;与圆相离,直线到圆的距离大于半径.9、C【解题分析】令x=0,则y=3,抛物线与y轴的交点为(0,3).【题目详解】解:令x=0,则y=3,
∴抛物线与y轴的交点为(0,3),
故选:C.【题目点拨】本题考查二次函数的图象及性质;熟练掌握二次函数的图象及性质,会求函数与坐标轴的交点是解题的关键.10、C【分析】求出抛物线的图象和x轴、y轴的交点坐标和顶点坐标,再根据二次函数的性质判断即可.【题目详解】解:y=x2﹣4x+4﹣2=(x﹣2)2﹣2,即抛物线的顶点坐标是(2,﹣2),在第四象限;当y=0时,x2﹣4x+2=0,解得:x=2,即与x轴的交点坐标是(2+,0)和(2﹣,0),都在x轴的正半轴上,a=1>0,抛物线的图象的开口向上,与y轴的交点坐标是(0,2),即抛物线的图象过第一、二、四象限,不过第三象限,故选:C.【题目点拨】本题考查了求函数图像与坐标轴交点坐标和顶点坐标,即求和x轴交点坐标就要令y=0、求与y轴的交点坐标就要令x=0,求顶点坐标需要配成顶点式再求顶点坐标二、填空题(每小题3分,共24分)11、【分析】由题意直接运用直角三角形的边角间关系进行分析计算即可求解得出结论.【题目详解】解:如图,解:在Rt△ABC中,∵∠C是直角,∴,又∵,∴.【题目点拨】本题考查直角三角形的边角关系,熟练掌握正弦和余弦所对应的边角关系是解题的关键.12、(6,6).【分析】利用位似变换的概念和相似三角形的性质进行解答即可.【题目详解】解:∵正方形OABC与正方形ODEF是位似图形,点O为位似中心,位似比为2:3,∴,即解得,OD=6,OF=6,则点E的坐标为(6,6),故答案为:(6,6).【题目点拨】本题考查了相似三角形、正方形的性质以及位似变换的概念,掌握位似和相似的区别与联系是解答本题的关键.13、【分析】方程有两个不相等的实数根,则>2,由此建立关于k的不等式,然后可以求出k的取值范围.【题目详解】解:由题意知,=36-36k>2,
解得k<1.
故答案为:k<1.【题目点拨】本题考查了一元二次方程根的情况与判别式的关系:(1)>2⇔方程有两个不相等的实数根;(2)=2⇔方程有两个相等的实数根;(3)<2⇔方程没有实数根.同时注意一元二次方程的二次项系数不为2.14、3<r≤1或r=.【解题分析】根据直线与圆的位置关系得出相切时有一交点,再结合图形得出另一种有一个交点的情况,即可得出答案.【题目详解】解:过点C作CD⊥AB于点D,∵AC=3,BC=1.∴AB=5,如果以点C为圆心,r为半径的圆与斜边AB只有一个公共点,当直线与圆相切时,d=r,圆与斜边AB只有一个公共点,∴CD×AB=AC×BC,∴CD=r=,当直线与圆如图所示也可以有一个交点,∴3<r≤1,故答案为3<r≤1或r=.【题目点拨】此题主要考查了直线与圆的位置关系,结合题意画出符合题意的图形,从而得出答案,此题比较容易漏解.15、x(x-1)=1【解题分析】试题分析:每人要赠送(x﹣1)张相片,有x个人,所以全班共送:(x﹣1)x=1.故答案是(x﹣1)x=1.考点:列一元二次方程.16、566【分析】通过解直角△OAC求得OC的长度,然后通过解直角△OBC求得OB的长度即可.【题目详解】设与正北方向线相交于点,根据题意,所以,在中,因为,所以,中,因为,所以(米).故答案为566.【题目点拨】考查了解直角三角形的应用-方向角的问题.此题是一道方向角问题,结合航海中的实际问题,将解直角三角形的相关知识有机结合,体现了数学应用于实际生活的思想.17、1【题目详解】∵△ABC是直角三角形,CD是斜边的中线,∴CD=AB,∴AB=2CD=2×1=10cm,又∵EF是△ABC的中位线,∴EF=×10=1cm.故答案为1.考点:三角形中位线定理;直角三角形斜边上的中线.18、>【解题分析】要比较甲、乙方差的大小,就需要求出甲、乙的方差;首先根据折线统计图结合根据平均数的计算公式求出这两组数据的平均数;接下来根据方差的公式求出甲、乙两个样本的方差,然后比较即可解答题目.【题目详解】甲组的平均数为:=4,S甲2=×[(3-4)2+(6-4)2+(2-4)2+(6-4)2+(4-4)2+(3-4)2]=,乙组的平均数为:=4,S乙2=×[(4-4)2+(3-4)2+(5-4)2+(3-4)2+(4-4)2+(5-4)2]=,∵>,∴S甲2>S乙2.故答案为:>.【题目点拨】本题考查的知识点是方差,算术平均数,折线统计图,解题的关键是熟练的掌握方差,算术平均数,折线统计图.三、解答题(共66分)19、(1).(2)公平,理由见解析.【分析】(1)利用概率公式直接求出即可;(2)首先利用列表法求出两人的获胜概率,判断双方取胜所包含的情况数目是否相等,即可得出答案.【题目详解】(1)从3个球中随机摸出一个,摸到标有数字是2的球的概率是:.(2)游戏规则对双方公平.列表如下:由表可知,P(小明获胜)=,P(小东获胜)=,∵P(小明获胜)=P(小东获胜),∴游戏规则对双方公平.【题目点拨】考点:1.游戏公平性;2.列表法与树状图法.20、(1);(2).【分析】(1)根据题意连接,利用圆的切线定理和平行四边形性质以及等腰直角三角形性质进行综合分析求解;(2)根据题意连接,,过点O作于点H,证明是等腰直角三角形,利用三角函数值进行分析求解即可.【题目详解】解:(1)连接,如下图,∵是圆的切线,∴,,∵四边形是平行四边形,∴,,∴,又,∴是等腰直角三角形,∴,∴,∴;(2)连接,,过点O作于点H,如下图,∵,∴,∵,∴也是等腰直角三角形,∵,∴,∴,∴,∴.【题目点拨】本题考查圆的综合问题,熟练掌握切线和平行四边形的性质以及等腰直角三角形性质是解题的关键.21、.【分析】试题分析:先在Rt△ACD中,由正切函数的定义得tanA=,求出AD=4,则BD=AB﹣AD=1,再解Rt△BCD,由勾股定理得BC==10,sinB=,cosB=,由此求出sinB+cosB=.【题目详解】解:在Rt△ACD中,∵∠ADC=90°,∴tanA=,∴AD=4,∴BD=AB﹣AD=12﹣4=1.在Rt△BCD中,∵∠BDC=90°,BD=1,CD=6,∴BC==10,∴sinB=,cosB=,∴sinB+cosB==.故答案为考点:解直角三角形;勾股定理.22、(1)OE=OF;(2)①,详见解析;②CF=OE-AE【分析】(1)由△AOE≌△COF即可得出结论.
(2)①图2中的结论为:CF=OE+AE,延长EO交CF于点N,只要证明△EOA≌△NOC,△OFN是等边三角形,即可解决问题.
②图3中的结论为:CF=OE-AE,延长EO交FC的延长线于点G,证明方法类似.【题目详解】解:⑴∵∴AE∥CF∴又,OA=OC∴△AOE≌△COF.∴OE=OF.⑵①延长EO交CF延长线于N.∵∴AE∥CF∴又,OA=OC∴△OAE≌△OCN∴AE=CN,OE=ON又,∴OF=ON=OE,∴OF=FN=ON=OE,又AE=CN∴CF=AE-OE②CF=OE-AE,证明如下:延长EO交FC的延长线于点G∵∴AE∥CF∴∠G=∠AEO,∠OCG=∠EA0,又∵AO=OC,∴△OAE≌△OCG.∴AE=CG,OG=OE.又,∴OF=OG=OE,∴△OGF是等边三角形,∴FG=OF=OE.∴CF=OE-AE.【题目点拨】本题考查四边形综合题、全等三角形的判定和性质、等边三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.23、(3)或;A、;B、或【分析】(3)根据两数相除,异号得负解答;A:先根据两数相除,同号得正,异号得负,把不等式转化成不等式组,然后根据一元一次不等式组的解法求解即可.B:先根据两数相乘,同号得正,异号得负,把不等式转化成不等式组,然后根据一元一次不等式组的解法求解即可.【题目详解】解:(3)若,则或;A:∵,由题意得:∴①或②解①得,解②无解∴不等式的解集是B:求不等式的解集解:由题意得:①或②解不等式组①得,解不等式组②得∴不等式的解集是或,【题目点拨】本题考查了一元一次不等式组的应用,读懂题目信息,理解不等式转化为不等式组的方法是解题的关键.24、(1),D;(2)是直角三角形,见解析;(3),.【分析】(1)直接将(−1,0),代入解析式进而得出答案,再利用配方法求出函数顶点坐标;(2)分别求出AB2=25,AC2=OA2+OC2=5,BC2=OC2+OB2=20,进而利用勾股定理的逆定理得出即可;(3)利用轴对称最短路线求法得出M点位置,求出直线的解析式,可得M点坐标,然后易求此时△ACM的周长.【题目详解】解:(1)∵点在抛物线上,∴,解得:.∴抛物线的解析式为,∵,∴顶点的坐标为:;(2)是直角三角形,证明:当时,∴,即,当时,,解得:,,∴,∴,,,∵,,,∴,∴是直角三角形;(3)如图所示:BC与对称轴交于点M,连接,根据轴对称性及两点之间线段最短可知,此时的值最小,即周长最小,设直线解析式为:,则,解得:,故直线的解析式为:,∵抛物线对称轴为∴当时,,∴,最小周长是:.【题目点拨】此题主要考查了二次函数综合应用、利用轴对称求最短路线以及勾股定理的逆定理等知识,得出M点位置是解题关键.25、(1)详见解析;(2)详见解析.【分析】(1)根据四边形ABCD是平行四边形可得AD∥BC,∠FGE=FBC,再根据已知∠FBC=∠DCE,进而可得结论;(2)作三角形FBC的外接圆交AD于点P即可证明.【
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 网球培训项目商业计划书
- 中国瑞舒伐他汀钙项目创业计划书
- 绿色建筑创建计划立项申报自评估报告(公共建筑)-图文
- 创业计划书自助餐厅模板x图文
- Module7 Unit1He spent about twenty-one hours in space.课件外研版六年级英语下册
- 安全教育模板课件
- 【课件】平面直角坐标系的概念+课件人教版(2024)七年级数学下册++
- 动力电池气密性检测及故障处理
- 2025年中国花肥行业发展现状与投资战略规划可行性报告
- 硫酸锌可行性研究报告
- 飞花令“水”的诗句100首含“水”字的诗句大全
- 门诊常见眼科病
- 保育师中级培训课件资源
- 心力衰竭病人的护理课件
- 教学机房规划方案
- 0-3岁儿童适应性行为的发展与教育
- 肿瘤患者全程管理
- 可行性研究报告编制服务投标方案
- 大学生如何处理学习与娱乐的平衡
- 专业文献阅读技巧
- 中国公民普通护照申请表(正面)
评论
0/150
提交评论