2024届浙江省嘉兴地区数学九上期末质量跟踪监视试题含解析_第1页
2024届浙江省嘉兴地区数学九上期末质量跟踪监视试题含解析_第2页
2024届浙江省嘉兴地区数学九上期末质量跟踪监视试题含解析_第3页
2024届浙江省嘉兴地区数学九上期末质量跟踪监视试题含解析_第4页
2024届浙江省嘉兴地区数学九上期末质量跟踪监视试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届浙江省嘉兴地区数学九上期末质量跟踪监视试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.如图,为线段上一点,与交与点,,交与点,交与点,则下列结论中错误的是()A. B. C. D.2.如图,在中,是边上的点,以为圆心,为半径的与相切于点,平分,,,的长是()A. B.2 C. D.3.(2015重庆市)如图,在平面直角坐标系中,菱形ABCD在第一象限内,边BC与x轴平行,A,B两点的纵坐标分别为3,1.反比例函数的图象经过A,B两点,则菱形ABCD的面积为()A.2 B.4 C. D.4.如图,将一个Rt△ABC形状的楔子从木桩的底端点P处沿水平方向打入木桩底下,使木桩向上运动,已知楔子斜面的倾斜角为20°,若楔子沿水平方向前移8cm(如箭头所示),则木桩上升了()A.8tan20° B. C.8sin20° D.8cos20°5.二次函数y=ax2+bx+c(a,b,c为常数且a≠0)的图象如图所示,则一次函数y=ax+b与反比例函数的图象可能是A. B. C. D.6.已知反比例函数y=的图象经过P(﹣2,6),则这个函数的图象位于()A.第二,三象限 B.第一,三象限C.第三,四象限 D.第二,四象限7.下列图形中,可以看作是中心对称图形的是()A. B. C. D.8.如图,在Rt△ABC中,∠ACB=90°,如果AC=3,AB=5,那么sinB等于()A. B. C. D.9.如图,AB为⊙O的直径,C、D是⊙O上的两点,∠BAC=20°,AD=CD,则∠DAC的度数是()A.30° B.35° C.45° D.70°10.有三张正面分别写有数字-1,1,2的卡片,它们背面完全相同,现将这三张卡片背面朝上洗匀后随机抽取一张,以其正面数字作为a的值,然后再从剩余的两张卡片随机抽一张,以其正面的数字作为b的值,则点(a,b)在第二象限的概率为()A. B. C. D.11.单靠“死”记还不行,还得“活”用,姑且称之为“先死后活”吧。让学生把一周看到或听到的新鲜事记下来,摒弃那些假话套话空话,写出自己的真情实感,篇幅可长可短,并要求运用积累的成语、名言警句等,定期检查点评,选择优秀篇目在班里朗读或展出。这样,即巩固了所学的材料,又锻炼了学生的写作能力,同时还培养了学生的观察能力、思维能力等等,达到“一石多鸟”的效果。如图,由两个相同的正方体和一个圆锥体组成一个立体图形,其左视图是(

)A. B. C. D.12.如图,在△ABC中,中线BE、CF相交于点G,连接EF,下列结论:①=;②=;③=;④=.其中正确的个数有()A.1个 B. C.3个 D.4个二、填空题(每题4分,共24分)13.若关于的一元二次方程有实数根,则的取值范围是__________.14.一个不透明的布袋中装有3个白球和5个红球,它们除了颜色不同外,其余均相同,从中随机摸出一个球,摸到红球的概率是______.15.如图,点A,B是双曲线上的点,分别过点A,B作轴和轴的垂线段,若图中阴影部分的面积为2,则两个空白矩形面积的和为____________.16.如图,请补充一个条件_________:,使△ACB∽△ADE.17.经过某十字路口的汽车,它可能直行,也可能向左转或向右转,假设这三种可能性大小相同,那么两辆汽车经过这个十字路口,一辆向左转,一辆向右转的概率是_____.18.已知,=________.三、解答题(共78分)19.(8分)已知:如图,在Rt△ABC中,∠ACB=90°,BC="3",tan∠BAC=,将∠ABC对折,使点C的对应点H恰好落在直线AB上,折痕交AC于点O,以点O为坐标原点,AC所在直线为x轴建立平面直角坐标系(1)求过A、B、O三点的抛物线解析式;(2)若在线段AB上有一动点P,过P点作x轴的垂线,交抛物线于M,设PM的长度等于d,试探究d有无最大值,如果有,请求出最大值,如果没有,请说明理由.(3)若在抛物线上有一点E,在对称轴上有一点F,且以O、A、E、F为顶点的四边形为平行四边形,试求出点E的坐标.20.(8分)一个直四棱柱的三视图如图所示,俯视图是一个菱形,求这个直四棱柱的表面积.21.(8分)解方程.(1)1x1﹣6x﹣1=0;(1)1y(y+1)﹣y=1.22.(10分)一个不透明的口袋中装有4个完全相同的小球,分别标有数字1,2,3,4,另有一个可以自由旋转的圆盘,被分成面积相等的3个扇形区域,分别标有数字1,2,3(如图所示).小颖和小亮想通过游戏来决定谁代表学校参加歌咏比赛,游戏规则为:一人从口袋中摸出一个小球,另一人转动圆盘,如果所摸球上的数字与圆盘上转出数字之和小于4,那么小颖去;否则小亮去.(1)用树状图法或列表法求出小颖参加比赛的概率;(2)你认为游戏公平吗?请说明理由;若不公平,请修改该游戏规则,使游戏公平.23.(10分)若为实数,关于的方程的两个非负实数根为、,求代数式的最大值.24.(10分)解方程(1)x2+4x﹣3=0(用配方法)(2)3x(2x+3)=4x+625.(12分)如图,在ABCD中,点E在BC边上,点F在DC的延长线上,且∠DAE=∠F.(1)求证:△ABE∽△ECF;(2)若AB=5,AD=8,BE=2,求FC的长.26.已知二次函数(、为常数)的图像经过点和点.(1)求、的值;(2)如图1,点在抛物线上,点是轴上的一个动点,过点平行于轴的直线平分,求点的坐标;(3)如图2,在(2)的条件下,点是抛物线上的一动点,以为圆心、为半径的圆与轴相交于、两点,若的面积为,请直接写出点的坐标.

参考答案一、选择题(每题4分,共48分)1、A【分析】先根据条件证明△PCF∽△BCP,利用相似三角形的性质:对应角相等,再证明△APD∽△PGD,进而证明△APG∽△BFP再证明时注意图形中隐含的相等的角,故可进行判断.【题目详解】∵∠CPD=∠B,∠C=∠C,∴△PCF∽△BCP.∵∠CPD=∠A,∠D=∠D,∴△APD∽△PGD.∵∠CPD=∠A=∠B,∠APG=∠B+∠C,∠BFP=∠CPD+∠C∴∠APG=∠BFP,∴△APG∽△BFP.故结论中错误的是A,故选A.【题目点拨】此题主要考查相似三角形的判定与性质,解题的关键是熟知相似三角形的判定定理.2、A【分析】由切线的性质得出求出,证出,得出,得出,由直角三角形的性质得出,得出,再由直角三角形的性质即可得出结果.【题目详解】解:∵与AC相切于点D,故选A.【题目点拨】本题考查的是切线的性质、直角三角形的性质、等腰三角形的性质、平行线的判定与性质、锐角三角函数的定义等知识,熟练掌握圆的切线和直角三角形的性质,证出是解题的关键.3、D【解题分析】试题解析:过点A作x轴的垂线,与CB的延长线交于点E,∵A,B两点在反比例函数y=的图象上且纵坐标分别为3,1,∴A,B横坐标分别为1,3,∴AE=2,BE=2,∴AB=2,S菱形ABCD=底×高=2×2=4,故选D.考点:1.菱形的性质;2.反比例函数图象上点的坐标特征.4、A【解题分析】根据已知,运用直角三角形和三角函数得到上升的高度为:8tan20°.【题目详解】设木桩上升了h米,∴由已知图形可得:tan20°=,∴木桩上升的高度h=8tan20°故选B.5、C【分析】根据二次函数y=ax2+bx+c的图象,可以判断a、b、c的正负情况,从而可以判断一次函数y=ax+b与反比例函数y=的图象分别在哪几个象限,从而可以解答本题.【题目详解】解:由二次函数y=ax2+bx+c的图象可知,a>0,b<0,c<0,则一次函数y=ax+b的图象经过第一、三、四象限,反比例函数y=的图象在二四象限,故选C.【题目点拨】本题考查反比例函数的图象、一次函数的图象、二次函数的图象,解题的关键是明确它们各自图象的特点,利用数形结合的思想解答问题.6、D【分析】将点P(-2,6)代入反比例函数求出k,若k>0,则函数的图象位于第一,三象限;若k<0,则函数的图象位于第二,四象限;【题目详解】∵反比例函数的图象经过P(﹣2,6),∴6=,∴k=-12,即k<0,这个函数的图象位于第二、四象限;故选D.【题目点拨】本题主要考查了反比例函数的图像性质,掌握反比例函数的图像是解题的关键.7、B【分析】把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,根据中心对称图形的概念求解.【题目详解】A、不是中心对称图形,故本选项不合题意;

B、是中心对称图形,故本选项符合题意;

C、不中心对称图形,故本选项不合题意;

D、不中心对称图形,故本选项不合题意.

故选:B.【题目点拨】本题主要考查了中心对称图形的概念:关键是找到相关图形的对称中心,旋转180度后与原图重合.8、A【解题分析】直接利用锐角三角函数关系得出sinB的值.【题目详解】∵在Rt△ABC中,∠ACB=90°,AC=3,AB=5,∴sinB=故选A.【题目点拨】此题主要考查了锐角三角函数关系,正确把握定义是解题关键.9、B【分析】连接BD,如图,利用圆周角定理得到∠ADB=90°,∠DBC=∠BAC=20°,则∠ADC=110°,然后根据等腰三角形的性质和三角形内角和计算∠DAC的度数.【题目详解】解:连接BD,如图,∵AB为⊙O的直径,∴∠ADB=90°,∵∠DBC=∠BAC=20°,∴∠ADC=90°+20°=110°,∵DA=DC,∴∠DAC=∠DCA,∴∠DAC=(180°﹣110°)=35°.故选:B.【题目点拨】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.10、B【题目详解】试题分析:根据题意,画出树状图如下:一共有6种情况,在第二象限的点有(﹣1,1)(﹣1,2)共2个,所以,P=.故选B.考点:列表法与树状图法求概率.11、B【解题分析】根据左视图的定义“在侧面内,从左往右观察物体得到的视图”判断即可.【题目详解】根据左视图的定义,从左往右观察,两个正方体得到的视图是一个正方形,圆锥得到的视图是一个三角形,由此只有B符合故选:B.【题目点拨】本题考查了三视图中的左视图的定义,熟记定义是解题关键.另外,主视图和俯视图的定义也是常考点.12、C【解题分析】根据三角形的中位线定理推出FE∥BC,利用平行线分线段成比例定理、相似三角形的判定与性质和等底同高的三角形面积相等一一判断即可.【题目详解】∵AF=FB,AE=EC,∴FE∥BC,FE:BC=1:2,∴,故①③正确.∵FE∥BC,FE:BC=1:2,∴FG:GC=1:2,△FEG∽△CBG.设S△FGE=S,则S△EGC=2S,S△BGC=4s,∴,故②错误.∵S△FGE=S,S△EGC=2S,∴S△EFC=3S.∵AE=EC,∴S△AEF=3S,∴=,故④正确.故选C.【题目点拨】本题考查了相似三角形的判定与性质、三角形中位线定理、平行线分线段成比例定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.二、填空题(每题4分,共24分)13、【分析】一元二次方程有实数根,即【题目详解】解:一元二次方程有实数根解得【题目点拨】本题考查与系数的关系.14、【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【题目详解】根据题意可得:一个不透明的袋中装有除颜色外其余均相同的3个白球和5个红球,共5个,从中随机摸出一个,则摸到红球的概率是故答案为:.【题目点拨】本题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.15、1.【解题分析】试题分析:∵点A、B是双曲线上的点,∴S矩形ACOG=S矩形BEOF=6,∵S阴影DGOF=2,∴S矩形ACDF+S矩形BDGE=6+6﹣2﹣2=1,故答案为1.考点:反比例函数系数k的几何意义.16、∠ADE=∠C或∠AED=∠B或【分析】由∠A是公共角,且DE与BC不平行,可得当∠ADE=∠C或∠AED=∠B或时,△ADE∽△ACB.【题目详解】①补充∠ADE=∠C,理由是:∵∠A是公共角,∠ADE=∠C,

∴△ADE∽△ACB.故答案为:∠ADE=∠C.②补充∠AED=∠B,理由是:∵A是公共角,∠AED=∠B,

∴△ADE∽△ACB.

③补充,理由是:∵∠A是公共角,,

∴△ADE∽△ACB.故答案为:∠ADE=∠C或∠AED=∠B或【题目点拨】本题考查了相似三角形的判定与性质.注意掌握判定定理的应用,注意掌握数形结合思想的应用.17、【分析】列举出所有情况,让一辆向左转,一辆向右转的情况数除以总情况数即为所求的可能性.【题目详解】一辆向左转,一辆向右转的情况有两种,则概率是.【题目点拨】本题考查了列表法与树状图法,用到的知识点为:可能性=所求情况数与总情况数之比.18、【分析】先去分母,然后移项合并,即可得到答案.【题目详解】解:∵,∴,∴,∴,∴;故答案为:.【题目点拨】本题考查了解二元一次方程,解题的关键是掌握解二元一次方程的方法.三、解答题(共78分)19、(1)y=;(2)当t=时,d有最大值,最大值为2;(3)在抛物线上存在三个点:E1(,-),E2(,),E3(-,),使以O、A、E、F为顶点的四边形为平行四边形.【解题分析】(1)在Rt△ABC中,根据∠BAC的正切函数可求得AC=1,再根据勾股定理求得AB,设OC=m,连接OH由对称性知,OH=OC=m,BH=BC=3,∠BHO=∠BCO=90°,即得AH=AB-BH=2,OA=1-m.在Rt△AOH中,根据勾股定理可求得m的值,即可得到点O、A、B的坐标,根据抛物线的对称性可设过A、B、O三点的抛物线的解析式为:y=ax(x-),再把B点坐标代入即可求得结果;(2)设直线AB的解析式为y=kx+b,根据待定系数法求得直线AB的解析式,设动点P(t,),则M(t,),先表示出d关于t的函数关系式,再根据二次函数的性质即可求得结果;(3)设抛物线y=的顶点为D,先求得抛物线的对称轴,与抛物线的顶点坐标,根据抛物线的对称性,A、O两点关于对称轴对称.分AO为平行四边形的对角线时,AO为平行四边形的边时,根据平行四边形的性质求解即可.【题目详解】(1)在Rt△ABC中,∵BC=3,tan∠BAC=,∴AC=1.∴AB=.设OC=m,连接OH由对称性知,OH=OC=m,BH=BC=3,∠BHO=∠BCO=90°,∴AH=AB-BH=2,OA=1-m.∴在Rt△AOH中,OH2+AH2=OA2,即m2+22=(1-m)2,得m=.∴OC=,OA=AC-OC=,∴O(0,0)A(,0),B(-,3).设过A、B、O三点的抛物线的解析式为:y=ax(x-).把x=,y=3代入解析式,得a=.∴y=x(x-)=.即过A、B、O三点的抛物线的解析式为y=.(2)设直线AB的解析式为y=kx+b,根据题意得,解之得,.∴直线AB的解析式为y=.设动点P(t,),则M(t,).∴d=()—()=—=∴当t=时,d有最大值,最大值为2.(3)设抛物线y=的顶点为D.∵y==,∴抛物线的对称轴x=,顶点D(,-).根据抛物线的对称性,A、O两点关于对称轴对称.当AO为平行四边形的对角线时,抛物线的顶点D以及点D关于x轴对称的点F与A、O四点为顶点的四边形一定是平行四边形.这时点D即为点E,所以E点坐标为().当AO为平行四边形的边时,由OA=,知抛物线存在点E的横坐标为或,即或,分别把x=和x=代入二次函数解析式y=中,得点E(,)或E(-,).所以在抛物线上存在三个点:E1(,-),E2(,),E3(-,),使以O、A、E、F为顶点的四边形为平行四边形.考点:二次函数的综合题点评:此题综合性较强,难度较大,注意掌握辅助线的作法是解此题的关键,注意数形结合思想与方程思想的应用.20、【解题分析】试题分析:计算两个底面的菱形的面积加上侧面四个矩形的面积即可求得直四棱柱的表面积.试题解析:∵俯视图是菱形,∴可求得底面菱形边长为2.5,上、下底面积和为6×2=12,侧面积为2.5×4×8=80∴直棱柱的表面积为21、(1),;(1)y1=﹣1,y1=.【分析】(1)根据配方法即可求出答案;(1)根据因式分解法即可求出答案;【题目详解】解:(1)∵1x1﹣6x﹣1=0,∴x1﹣3x=,∴(x﹣)1=,∴x=,解得:,;(1)∵1y(y+1)﹣y=1,∴1y(y+1)﹣y﹣1=0,∴(y+1)(1y﹣1)=0,∴y+1=0或1y﹣1=0,解得:y1=﹣1,y1=.【题目点拨】本题考查解一元二次方程,解题的关键是熟练掌握一元二次方程的解法,本题属于基础题型.22、(1)P(小颖去)=;(2)不公平,见解析.【分析】(1)首先根据题意画出树状图,由树状图求得所有等可能的结果与两指针所指数字之和和小于4的情况,则可求得小颖参加比赛的概率;(2)根据小颖获胜与小亮获胜的概率,比较概率是否相等,即可判定游戏是否公平;使游戏公平,只要概率相等即可.【题目详解】(1)画树状图得:∵共有12种等可能的结果,所指数字之和小于4的有3种情况,∴P(和小于4)==,∴小颖参加比赛的概率为:;(2)不公平,∵P(小颖)=,P(小亮)=.∴P(和小于4)≠P(和大于等于4),∴游戏不公平;可改为:若两个数字之和小于5,则小颖去参赛;否则,小亮去参赛.23、1【分析】根据根的判别式和根与系数的关系进行列式求解即可;【题目详解】∵,,,,,,,当时,原式=-15,当时,原式=1,代数式的最大值为1.【题目点拨】本题主要考查了一元二次方程的知识点,准确应用根的判别式和根与系数的关系是解题的关键.24、(1)x1=﹣2+,x2=﹣2﹣;(2)x1=,x2=﹣.【解题分析】(1)原式利用配方法求出解即可;(2)原式整理后,利用因式分解法求出解即可.【题目详解】(1)方程整理得:x2+4x=3,配方得:x2+4x+4=7,即(x+2)2=7,开方得:x+2=±,解得:x1=﹣2+,x2=﹣2﹣;(2)方程整理得:3x(2x+3)﹣2(2x+3)=0,分解因式得:(3x﹣2)(2x+3)=0,可得3

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论