版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
上海市闵行区闵行区莘松中学2024届数学九年级第一学期期末达标检测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题3分,共30分)1.下列事件是必然事件的是()A.通常加热到100℃,水沸腾B.抛一枚硬币,正面朝上C.明天会下雨D.经过城市中某一有交通信号灯的路口,恰好遇到红灯2.如图,AB是⊙O的直径,弦CD⊥AB于点E,且E为OB的中点,∠CDB=30°,CD=4,则阴影部分的面积为()A.π B.4π C.π D.π3.已知抛物线与x轴相交于点A,B(点A在点B左侧),顶点为M.平移该抛物线,使点M平移后的对应点M'落在x轴上,点B平移后的对应点B'落在y轴上,则平移后的抛物线解析式为()A. B. C. D.4.如图,将绕点逆时针旋转70°到的位置,若,则()A.45° B.40° C.35° D.30°5.把一张矩形的纸片对折后和原矩形相似,那么大矩形与小矩形的相似比是()A.:1 B.4:1 C.3:1 D.2:16.下列运算中,正确的是()A.x3+x=x4 B.(x2)3=x6 C.3x﹣2x=1 D.(a﹣b)2=a2﹣b27.在下列图形中,既是中心对称图形又是轴对称图形的是()A.等边三角形 B.圆 C.等腰梯形 D.直角三角形8.如图,是的外接圆,已知,则的大小为()A. B. C. D.9.在同一平面直角坐标系中,函数y=x﹣1与函数的图象可能是A. B. C. D.10.在△ABC中,∠C=90°,AB=12,sinA=,则BC等于()A. B.4 C.36 D.二、填空题(每小题3分,共24分)11.已知是方程的根,则代数式的值为__________.12.据国家统计局数据,2018年全年国内生产总值为90.3万亿,比2017年增长6.6%.假设国内生产总值的年增长率保持不变,则国内生产总值首次突破100万亿的年份是_______.13.在数、、中任取两个数(不重复)作为点的坐标,则该点刚好在一次函数图象的概率是________________.14.如图,△ABC的顶点A、B、C都在边长为1的正方形网格的格点上,则sinA的值为________.15.方程组的解是_____.16.在平面直角坐标系中,直线l:y=x﹣1与x轴交于点A,如图所示依次作正方形A1B1C1O、正方形A2B2C2C1…、正方形AnBn∁nCn+1,使得点A1、A2、A3、…在直线l上,点C1、C2、C3、…在y轴正半轴上,则点B₃的坐标是_____,点Bn的坐标是_____.17.在泰州市举行的大阅读活动中,小明同学发现自己的一本书的宽与长之比为黄金比.已知这本书的长为20cm,则它的宽为________cm.(结果保留根号)18.如图,点A、B分别在反比例函数y=(k1>0)和y=(k2<0)的图象上,连接AB交y轴于点P,且点A与点B关于P成中心对称.若△AOB的面积为4,则k1-k2=______.三、解答题(共66分)19.(10分)如图,在⊙O中,,∠ACB=60°,求证∠AOB=∠BOC=∠COA.20.(6分)如图,在四边形中,,点为的中点,.(1)求证:∽;(2)若,,求线段的长.21.(6分)已知:如图,△ABC内接于⊙O,AB为直径,∠CBA的平分线交AC于点F,交⊙O于点D,DE⊥AB于点E,且交AC于点P,连结AD.(1)求证:∠DAC=∠DBA;(2)连接CD,若CD﹦3,BD﹦4,求⊙O的半径和DE的长.22.(8分)如图,在平面直角坐标系中,矩形的顶点,,的坐标分别,,,以为顶点的抛物线过点.动点从点出发,以每秒个单位的速度沿线段向点匀速运动,过点作轴,交对角线于点.设点运动的时间为(秒).(1)求抛物线的解析式;(2)若分的面积为的两部分,求的值;(3)若动点从出发的同时,点从出发,以每秒1个单位的速度沿线段向点匀速运动,点为线段上一点.若以,,,为顶点的四边形为菱形,求的值.23.(8分)某养殖场计划用96米的竹篱笆围成如图所示的①、②、③三个养殖区域,其中区域①是正方形,区域②和③是矩形,且AG∶BG=3∶1.设BG的长为1x米.(1)用含x的代数式表示DF=;(1)x为何值时,区域③的面积为180平方米;(3)x为何值时,区域③的面积最大?最大面积是多少?24.(8分)如图,正方形ABCD,将边BC绕点B逆时针旋转60°,得到线段BE,连接AE,CE.(1)求∠BAE的度数;(2)连结BD,延长AE交BD于点F.①求证:DF=EF;②直接用等式表示线段AB,CF,EF的数量关系.25.(10分)已知△ABC为等边三角形,M为三角形外任意一点,把△ABM绕着点A按逆时针方向旋转60°到△CAN的位置.(1)如图①,若∠BMC=120°,BM=2,MC=3.求∠AMB的度数和求AM的长.(2)如图②,若∠BMC=n°,试写出AM、BM、CM之间的数量关系,并证明你的猜想.26.(10分)如图,已知是边长为的等边三角形,动点、同时从、两点出发,分别沿、方向匀速移动,它们的移动速度都是,当点到达点时,、两点停止运动,设点的运动时间的秒,解答下列问题.(1)时,求的面积;(2)若是直角三角形,求的值;(3)用表示的面积并判断能否成立,若能成立,求的值,若不能成立,说明理由.
参考答案一、选择题(每小题3分,共30分)1、A【解题分析】解:A.通常加热到100℃,水沸腾,是必然事件,故A选项符合题意;B.抛一枚硬币,正面朝上,是随机事件,故B选项不符合题意;C.明天会下雨,是随机事件,故C选项不符合题意;D.经过城市中某一有交通信号灯的路口,恰好遇到红灯,是随机事件,故D选项不符合题意.故选A.【题目点拨】解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件;不可能事件是指在一定条件下,一定不发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.2、D【分析】根据圆周角定理求出∠COB,进而求出∠AOC,再利用垂径定理以及锐角三角函数关系得出OC的长,再结合扇形面积求出答案.【题目详解】解:∵,∴,∴,∵,,∴,,∴,∴阴影部分的面积为,
故选:D.【题目点拨】本题考查了圆周角定理,垂径定理,解直角三角形,扇形面积公式等知识点,能求出线段OC的长和∠AOC的度数是解此题的关键.3、A【解题分析】解:当y=0,则,(x﹣1)(x﹣3)=0,解得:x1=1,x2=3,∴A(1,0),B(3,0),=,∴M点坐标为:(2,﹣1).∵平移该抛物线,使点M平移后的对应点M'落在x轴上,点B平移后的对应点B'落在y轴上,∴抛物线向上平移一个单位长度,再向左平移3个单位长度即可,∴平移后的解析式为:=.故选A.4、D【分析】首先根据旋转角定义可以知道,而,然后根据图形即可求出.【题目详解】解:∵绕点逆时针旋转70°到的位置,∴,而,∴故选D.【题目点拨】此题主要考查了旋转的定义及性质,其中解题主要利用了旋转前后图形全等,对应角相等等知识.5、A【分析】设原矩形的长为2a,宽为b,对折后所得的矩形与原矩形相似,则【题目详解】设原矩形的长为2a,宽为b,
则对折后的矩形的长为b,宽为a,
∵对折后所得的矩形与原矩形相似,
∴,
∴大矩形与小矩形的相似比是:1;
故选A.【题目点拨】理解好:如果两个边数相同的多边形的对应角相等,对应边成比例,这两个或多个多边形叫做相似多边形,相似多边形对应边的比叫做相似比.6、B【解题分析】试题分析:A、根据合并同类法则,可知x3+x无法计算,故此选项错误;B、根据幂的乘方的性质,可知(x2)3=x6,故正确;C、根据合并同类项法则,可知3x-2x=x,故此选项错误;D、根据完全平方公式可知:(a-b)2=a2-2ab+b2,故此选项错误;故选B.考点:1、合并同类项,2、幂的乘方运算,3、完全平方公式7、B【分析】根据轴对称图形与中心对称图形的概念对各选项分析判断即可.【题目详解】解:A、等边三角形是轴对称图形,不是中心对称图形,故本选项错误;B、圆是轴对称图形,也是中心对称图形,故本选项正确;C、等腰梯形是轴对称图形,不是中心对称图形,故本选项错误;D、直角三角形不一定是轴对称图形,也不是中心对称图形,故本选项错误;故选B.【题目点拨】本题考查了轴对称图形与中心对称图形,识别轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合,识别中心对称图形的关键是寻找对称中心,旋转180°后与原图重合.8、B【分析】根据圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半可得∠AOB=100°,再根据三角形内角和定理可得答案.【题目详解】∵∠ACB=50°,∴∠AOB=100°,∵AO=BO,∴∠ABO=(180°-100°)÷2=40°,故选:B.【题目点拨】此题主要考查了三角形的外接圆与外心,圆周角定理,关键是掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.9、C【解题分析】试题分析:一次函数的图象有四种情况:①当,时,函数的图象经过第一、二、三象限;②当,时,函数的图象经过第一、三、四象限;③当,时,函数的图象经过第一、二、四象限;④当,时,函数的图象经过第二、三、四象限.因此,∵函数y=x﹣1的,,∴它的图象经过第一、三、四象限.根据反比例函数的性质:当时,图象分别位于第一、三象限;当时,图象分别位于第二、四象限.∵反比例函数的系数,∴图象两个分支分别位于第一、三象限.综上所述,符合上述条件的选项是C.故选C.10、B【分析】根据正弦的定义列式计算即可.【题目详解】解:在△ABC中,∠C=90°,sinA=,∴=,解得BC=4,故选B.【题目点拨】本题主要考查了三角函数正弦的定义,熟练掌握定义是解题的关键.二、填空题(每小题3分,共24分)11、1【分析】把代入已知方程,并求得,然后将其整体代入所求的代数式进行求值即可.【题目详解】解:把代入,得,解得,所以.故答案是:1.【题目点拨】本题考查一元二次方程的解以及代数式求值,注意解题时运用整体代入思想.12、2020【分析】根据题意分别求出2019年全年国内生产总值、2020年全年国内生产总值,得到答案.【题目详解】解:2019年全年国内生产总值为:90.3×(1+6.6%)=96.2598(万亿),
2020年全年国内生产总值为:96.2598×(1+6.6%)≈102.6(万亿),
∴国内生产总值首次突破100万亿的年份是2020年,
故答案为:2020.【题目点拨】本题考查的是有理数的混合运算,掌握有理数的混合运算法则、正确列出算式是解题的关键.13、【分析】列表得出所有等可能的情况数,找出刚好在一次函数y=x-2图象上的点个数,即可求出所求的概率.【题目详解】列表得:
-112-1---(1,-1)(2,-1)1(-1,1)---(2,1)2(-1,2)(1,2)---所有等可能的情况有6种,其中该点刚好在一次函数y=x-2图象上的情况有:(1,-1)共1种,则故答案为:【题目点拨】此题考查了列表法与树状图法,以及一次函数图象上点的坐标特征,用到的知识点为:概率=所求情况数与总情况数之比.14、【解题分析】如图,由题意可知∠ADB=90°,BD=,AB=,∴sinA=.15、【分析】根据二元一次方程组的解法解出即可.【题目详解】解:,①+②得:3x=9,x=3,把x=3代入①得:y=2,∴,故答案为:.【题目点拨】本题考查解二元一次方程组,关键在于熟练掌握解法步骤.16、(4,7)(2n﹣1,2n﹣1)【分析】根据一次函数图象上点的坐标特征找出A1、A2、A3、A4的坐标,结合图形即可得知点Bn是线段CnAn+1的中点,由此即可得出点Bn的坐标.【题目详解】解:∵直线l:y=x﹣1与x轴交于点A,∴A1(1,0),观察,发现:A1(1,0),A2(2,1),A3(4,3),A4(8,7),…,∴An(2n﹣1,2n﹣1﹣1)(n为正整数).观察图形可知:B1(1,1),B2(2,3),B3(4,7),点Bn是线段CnAn+1的中点,∴点Bn的坐标是(2n﹣1,2n﹣1).故答案为:(4,7),(2n﹣1,2n﹣1)(n为正整数).【题目点拨】此题主要考查一次函数与几何,解题的关键是发现坐标的变化规律.17、()【解题分析】设它的宽为xcm.由题意得.∴.点睛:本题主要考查黄金分割的应用.把一条线段分割为两部分,使其中较长部分与全长之比等于较短部分与较长部分之比,其比值是一个无理数,即,近似值约为0.618.18、1【分析】作AC⊥y轴于C,BD⊥y轴于D,如图,先证明△ACP≌△BDP得到S△ACP=S△BDP,利用等量代换和k的几何意义得到=S△AOC+S△BOD=×|k1|+|k2|=4,然后利用k1<0,k2>0可得到k2-k1的值.【题目详解】解:作AC⊥y轴于C,BD⊥y轴于D,如图,∵点A与点B关于P成中心对称.
∴P点为AB的中点,
∴AP=BP,
在△ACP和△BDP中,
∴△ACP≌△BDP(AAS),
∴S△ACP=S△BDP,
∴S△AOB=S△APO+S△BPO=S△AOC+S△BOD=×|k1|+|k2|=4,∴|k1|+|k2|=1
∵k1>0,k2<0,
∴k1-k2=1.
故答案为1.【题目点拨】本题考查了比例系数k的几何意义:在反比例函数y=图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.在反比例函数的图象上任意一点向坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是|k|,且保持不变.也考查了反比例函数的性质.三、解答题(共66分)19、详见解析.【解题分析】试题分析:根据弧相等,则对应的弦相等从而证明AB=AC,则△ABC易证是等边三角形,然后根据同圆中弦相等,则对应的圆心角相等即可证得.试题解析:证明:∵,∴AB=AC,△ABC为等腰三角形(相等的弧所对的弦相等)∵∠ACB=60°∴△ABC为等边三角形,AB=BC=CA∴∠AOB=∠BOC=∠COA(相等的弦所对的圆心角相等)20、(1)见解析;(2)1.【分析】(1)由得出,从而有,等量代换之后有,再加上即可证明相似;(2)由相似三角形的性质可求出AE的长度,进而求出AB的长度,过点D作DF⊥BC于点F,则四边形ABFD是矩形,得出,从而求出CF的长度,最后利用勾股定理即可求解.【题目详解】(1)(2)过点D作DF⊥BC于点F∵点为的中点∵,,,DF⊥BC∴四边形ABFD是矩形【题目点拨】本题主要考查相似三角形的判定及性质,掌握相似三角形的判定方法及性质是解题的关键.21、(1)见解析;(2)⊙O的半径为2.5;DE=2.1.【分析】(1)根据角平分线的性质得到∠CBD=∠DBA,根据圆周角定理得到∠DAC=∠CBD,∠ADB=∠AED=90°,等量代换即可得到结论;(2)连接CD,根据等腰三角形的性质得到CD=AD,根据勾股定理得到AB=5,根据三角形的面积公式即可得到结论.【题目详解】解:(1)证明:∵BD平分∠CBA,∴∠CBD=∠DBA,∵∠DAC与∠CBD都是所对的圆周角,∴∠DAC=∠CBD,∴∠DAC=∠DBA,(2)解:连接CD,∵∠CBD=∠DBA,∴CD=AD=3,∵AB是⊙O的直径∴∠ADB=90°在Rt△ADB中,AB=故⊙O的半径为2.5∵∴;【题目点拨】此题考查的是三角形的外接圆与外心及圆周角定理和勾股定理以及三角形面积等知识,熟练利用圆周角定理得出各等量关系是解题关键.22、(1);(2)的值为或;(3)的值为或.【分析】(1)运用待定系数法求解;(2)根据已知,证,,可得或;(3)分两种情况:当为菱形的对角线时:由点,的横坐标均为,可得.求直线的表达式为,再求N的纵坐标,得,根据菱形性质得,可得.在中,得.同理,当为菱形的边时:由菱形性质可得,.由于,所以.结合三角函数可得.【题目详解】解:(1)因为,矩形的顶点,,的坐标分别,,,所以A的坐标是(1,4),可设函数解析式为:把代入可得,a=-1所以,即.(2)因为PE∥CD所以可得.由分的面积为的两部分,可得所以,解得.所以,的值为=(秒).或,解得.所以,的值为.综上所述,的值为或.(3)当为菱形的对角线时:由点,的横坐标均为,可得.设直线AC的解析式为,把A,C的坐标分别代入可得解得所以直线的表达式为.将点的横坐标代入上式,得.即.由菱形可得,.可得.在中,得.解得,,t2=4(舍).当为菱形的边时:由菱形性质可得,.由于,所以.因为.由,得.解得,,综上所述,的值为或.【题目点拨】考核知识点:相似三角形,二次函数,三角函数.分类讨论,数形结合,运用菱形性质和相似三角形性质或三角函数定义构造方程,再求解是解题关键.23、(1)48-11x;(1)x为1或3;(3)x为1时,区域③的面积最大,为140平方米【分析】(1)将DF、EC以外的线段用x表示出来,再用96减去所有线段的长再除以1可得DF的长度;(1)将区域③图形的面积用关于x的代数式表示出来,并令其值为180,求出方程的解即可;(3)令区域③的面积为S,得出x关于S的表达式,得到关于S的二次函数,求出二次函数在x取值范围内的最大值即可.【题目详解】(1)48-11x(1)根据题意,得5x(48-11x)=180,解得x1=1,x1=3答:x为1或3时,区域③的面积为180平方米(3)设区域③的面积为S,则S=5x(48-11x)=-60x1+140x=-60(x-1)1+140∵-60<0,∴当x=1时,S有最大值,最大值为140答:x为1时,区域③的面积最大,为140平方米【题目点拨】本题考查了二次函数的实际应用,解题的关键是正确理解题中的等量关系,正确得出区域面积的表达式.24、(1)75°;(2)①见解析②【分析】(1)根据题意利用等腰三角形性质以及等量代换求∠BAE的度数;(2)①由正方形的对称性可知,∠DAF=∠DCF=15°,从而证明△BCF≌△ECF,求证DF=EF;②题意要求等式表示线段AB,CF,EF的数量关系,利用等腰直角三角形以及等量代换进行分析.【题目详解】(1)解:∵AB=BE,∴∠BAE=∠BEA.∵∠ABE=90°-60°=30°∴∠BAE=75°.(2)①证明:∴∠DAF=15°.连结CF.由正方形的对称性可知,∠DAF=∠DCF=15°.∵∠BCD=90°,∠BCE=60°,∴∠DCF=∠ECF=∠DAF=15°.∵BC=EC,CF=CF,∴△DCF≌△ECF.∴DF=EF.②过C作CO垂直BD交于O,由题意求得∠OCF=30°,设OF=x,CF=2x,OB=OC=OD=x,EF=DF=OD-OF=x-x则BC=AB=有即有.【题目点拨】本题考查正方形相关,综合利用等腰三角形性质以及全等三角形的证明和等量替换进行分析是解题关键.25、(1)60°,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度二手汽车买卖合同模板4篇
- 土地转让合同
- 私人库房买卖合同标准版
- 2024年度租赁合同:某房产公司与租户2篇
- 汽车买卖合同协议书样本
- 2024年度机器学习与深度学习合同2篇
- 卵石采购2024年度合同
- 消防采购合同范本版
- 股权转让同时承债的2024年度合同
- 二零二四年智能设备研发与许可合同2篇
- 劳动技能实操指导(劳动教育)学习通超星期末考试答案章节答案2024年
- 2024届高三上学期开学家长会
- 中国新一代信息技术产业发展现状及前景趋势分析报告2024-2030年
- 2024数智化绿色低碳评价管理体系
- UNIT 2 Were Family!教学设计 2024-2025学年人教版英语七年级上册
- 《司马光 》第二课时公开课一等奖创新教案
- 10KV架空线路工程班前、班后会模版
- 2024年湖北武汉大学专业技术支撑岗位招聘历年(高频重点复习提升训练)共500题附带答案详解
- 离婚协议书模板可打印(2024版)
- 人教版PEP五年级上册英语《Unit 2My week第二课时》教案
- 2024-2030年中国IP行业市场深度分析及发展趋势研究报告
评论
0/150
提交评论