2024届山东省东营市数学九上期末联考模拟试题含解析_第1页
2024届山东省东营市数学九上期末联考模拟试题含解析_第2页
2024届山东省东营市数学九上期末联考模拟试题含解析_第3页
2024届山东省东营市数学九上期末联考模拟试题含解析_第4页
2024届山东省东营市数学九上期末联考模拟试题含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届山东省东营市数学九上期末联考模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.方程的解是()A. B. C.或 D.或2.反比例函数在第一象限的图象如图所示,则k的值可能是()A.3 B.5 C.6 D.83.在反比例函数的图象的每个象限内,y随x的增大而增大,则k值可以是()A.-1 B.1 C.2 D.34.如图,l1∥l2∥l3,直线a,b与l1、l2、l3分别相交于A、B、C和点D、E、F.若,DE=4,则EF的长是()A. B. C.6 D.105.如图所示,是二次函数y=ax2﹣bx+2的大致图象,则函数y=﹣ax+b的图象不经过()A.第一象限 B.第二象限 C.第三象限 D.第四象限6.设m是方程的一个较大的根,n是方程的一个较小的根,则的值是()A. B. C.1 D.27.如图是一个正方体被截去一角后得到的几何体,从上面看得到的平面图形是()A. B. C. D.8.如果,那么代数式的值是().A.2 B. C. D.9.如图,▱ABCD的对角线相交于点O,且,过点O作交BC于点E,若的周长为10,则▱ABCD的周长为A.14 B.16 C.20 D.1810.若,,则以为根的一元二次方程是()A. B.C. D.二、填空题(每小题3分,共24分)11.甲、乙、丙三人站成一排合影留念,则甲、乙二人相邻的概率是.12.如图,是某公园一圆形喷水池,在池中心竖直安装一根水管OA=1.25m,A处是喷头,水流在各个方向沿形状相同的抛物线落下,水落地后形成一个圆,圆心为O,直径为线段CB.建立如图所示的平面直角坐标系,若水流路线达到最高处时,到x轴的距离为2.25m,到y轴的距离为1m,则水落地后形成的圆的直径CB=_____m.13.已知二次函数的自变量与函数的部分对应值列表如下:…-3-2-10……0-3-4-3…则关于的方程的解是______.14.一个口袋中放有除颜色外,形状大小都相同的黑白两种球,黑球6个,白球10个.现在往袋中放入m个白球和4个黑球,使得摸到白球的概率为,则m=__.15.抛物线向右平移个单位,向上平移1个单位长度得到的抛物线解析式是_____16.如图,一艘轮船从位于灯塔的北偏东60°方向,距离灯塔60海里的小岛出发,沿正南方向航行一段时间后,到达位于灯塔的南偏东45°方向上的处,这时轮船与小岛的距离是__________海里.17.已知和是方程的两个实数根,则__________.18.已知,且,且与的周长和为175,则的周长为_________.三、解答题(共66分)19.(10分)定义:只有一组对角是直角的四边形叫做损矩形,连接它的两个非直角顶点的线段叫做这个损矩形的直径.如图1,∠ABC=∠ADC=90°,四边形ABCD是损矩形,则该损矩形的直径是线段AC.同时我们还发现损矩形中有公共边的两个三角形角的特点:在公共边的同侧的两个角是相等的.如图1中:△ABC和△ABD有公共边AB,在AB同侧有∠ADB和∠ACB,此时∠ADB=∠ACB;再比如△ABC和△BCD有公共边BC,在CB同侧有∠BAC和∠BDC,此时∠BAC=∠BDC.(1)请在图1中再找出一对这样的角来:=.(2)如图2,△ABC中,∠ABC=90°,以AC为一边向外作菱形ACEF,D为菱形ACEF对角线的交点,连接BD,当BD平分∠ABC时,判断四边形ACEF为何种特殊的四边形?请说明理由.(3)在第(2)题的条件下,若此时AB=6,BD=8,求BC的长.20.(6分)如图,是的直径,点在上,,FD切于点,连接并延长交于点,点为中点,连接并延长交于点,连接,交于点,连接.(1)求证:;(2)若的半径为,求的长.21.(6分)如图,AC是⊙O的直径,BC是⊙O的弦,点P是⊙O外一点,连接PB、AB,∠PBA=∠C.(1)求证:PB是⊙O的切线;(2)连接OP,若OP∥BC,且OP=4,⊙O的半径为,求BC的长.22.(8分)(1)计算:|﹣2|+(π﹣3)1+2sin61°.(2)解下列方程:x2﹣3x﹣1=1.23.(8分)一个直四棱柱的三视图如图所示,俯视图是一个菱形,求这个直四棱柱的表面积.24.(8分)定义:若一个四边形能被其中一条对角线分割成两个相似三角形,则称这个四边形为“友好四边形”.(1)如图1,在的正方形网格中,有一个网格和两个网格四边形与,其中是被分割成的“友好四边形”的是;(2)如图2,将绕点逆时针旋转得到,点落在边,过点作交的延长线于点,求证:四边形是“友好四边形”;(3)如图3,在中,,,的面积为,点是的平分线上一点,连接,.若四边形是被分割成的“友好四边形”,求的长.25.(10分)如图,AB是的直径,点C,D在上,且BD平分∠ABC.过点D作BC的垂线,与BC的延长线相交于点E,与BA的延长线相交于点F.(1)求证:EF与相切:(2)若AB=3,BD=,求CE的长.26.(10分)如图,已知二次函数y=ax2+bx+3的图象交x轴于点A(1,0),B(3,0),交y轴于点C.(1)求这个二次函数的表达式;(2)点P是直线BC下方抛物线上的一动点,求△BCP面积的最大值;(3)直线x=m分别交直线BC和抛物线于点M,N,当△BMN是等腰三角形时,直接写出m的值.

参考答案一、选择题(每小题3分,共30分)1、C【解题分析】方程左边已经是两个一次因式之积,故可化为两个一次方程,解这两个一元一次方程即得答案.【题目详解】解:∵,∴x-1=0或x-2=0,解得:或.故选:C.【题目点拨】本题考查了一元二次方程的解法,属于基本题型,熟练掌握分解因式解方程的方法是关键.2、B【分析】根据点(1,3)在反比例函数图象下方,点(3,2)在反比例函数图象上方可得出k的取值范围,即可得答案.【题目详解】∵点(1,3)在反比例函数图象下方,∴k>3,∵点(3,2)在反比例函数图象上方,∴<2,即k<6,∴3<k<6,故选:B.【题目点拨】本题考查了反比例函数的图象的性质,熟记k=xy是解题关键.3、A【解题分析】因为的图象,在每个象限内,y的值随x值的增大而增大,所以k−1<0,即k<1.故选A.4、C【分析】根据平行线分线段成比例可得,代入计算即可解答.【题目详解】解:∵l1∥l2∥l3,∴,即,解得:EF=1.故选:C.【题目点拨】本题主要考查平行线分线段成比例定理,熟悉定理是解题的关键.5、A【解题分析】解:∵二次函数y=ax2﹣bx+2的图象开口向上,∴a>0;∵对称轴x=﹣<0,∴b<0;因此﹣a<0,b<0∴综上所述,函数y=﹣ax+b的图象过二、三、四象限.即函数y=﹣ax+b的图象不经过第一象限.故选A.6、C【分析】先解一元二次方程求出m,n即可得出答案.【题目详解】解方程得或,则,解方程,得或,则,,故选:C.【题目点拨】本题考查了解一元二次方程,掌握方程解法是解题关键.7、B【分析】根据俯视图是从上面看到的图形可得俯视图为正方形以及右下角一个三角形.【题目详解】从上面看,是正方形右边有一条斜线,如图:故选B.【题目点拨】考查了三视图的知识,根据俯视图是从物体的上面看得到的视图得出是解题关键.8、A【解题分析】(a-)·=·=·=a+b=2.故选A.9、C【解题分析】由平行四边形的性质得出,,,再根据线段垂直平分线的性质得出,由的周长得出,即可求出平行四边形ABCD的周长.【题目详解】解:四边形ABCD是平行四边形,,,,,,的周长为10,,平行四边形ABCD的周长;故选:C.【题目点拨】本题考查了平行四边形的性质、线段垂直平分线的性质以及三角形、平行四边形周长的计算;熟练掌握平行四边形的性质,并能进行推理计算是解决问题的关键.10、B【分析】由已知条件可得出,再根据一元二次方程的根与系数的关系,,分别得出四个方程的两个根的和与积,即可得出答案.【题目详解】解:∵,∴A.,方程的两个根的和为-3,积为-2,选项错误;B.,方程的两个根的和为3,积为2,选项正确;C.,方程的两个根的和为-3,积为2,选项错误;D.,方程的两个根的和为3,积为-2,选项错误;故选:B.【题目点拨】本题考查的知识点是根与系数的关键,熟记求根公式是解此题的关键.二、填空题(每小题3分,共24分)11、【题目详解】画树状图得:∵共有6种等可能的结果,甲、乙二人相邻的有4种情况,∴甲、乙二人相邻的概率是:.12、1【分析】设y轴右侧的抛物线解析式为:y=a(x−1)2+2.21,将A(0,1.21)代入,求得a,从而可得抛物线的解析式,再令函数值为0,解方程可得点B坐标,从而可得CB的长.【题目详解】解:设y轴右侧的抛物线解析式为:y=a(x﹣1)2+2.21∵点A(0,1.21)在抛物线上∴1.21=a(0﹣1)2+2.21解得:a=﹣1∴抛物线的解析式为:y=﹣(x﹣1)2+2.21令y=0得:0=﹣(x﹣1)2+2.21解得:x=2.1或x=﹣0.1(舍去)∴点B坐标为(﹣2.1,0)∴OB=OC=2.1∴CB=1故答案为:1.【题目点拨】本题考查了二次函数在实际问题中的应用,明确二次函数的相关性质及正确的解方程,是解题的关键.13、,【分析】首先根据与函数的部分对应值求出二次函数解析式,然后即可得出一元二次方程的解.【题目详解】将(0,-3)(-1,-4)(-3,0)代入二次函数,得解得∴二次函数解析式为∴方程为∴方程的解为,故答案为,.【题目点拨】此题主要考查二次函数与一元二次方程的综合应用,熟练掌握,即可解题.14、1【分析】根据概率公式列出方程,即可求出答案.【题目详解】解:由题意得,解得m=1,经检验m=1是原分式方程的根,故答案为1.【题目点拨】本题主要考查了概率公式,根据概率公式列出方程是解题的关键.15、【分析】根据图象的平移规律,可得答案.【题目详解】解:将抛物线向右平移个单位,向上平移1个单位长度得到的抛物线的解析式是将抛物线,

故答案为:.【题目点拨】主要考查了函数图象的平移,要求熟练掌握平移的规律:左加右减,上加下减.16、(30+30)【分析】过点C作CD⊥AB,则在Rt△ACD中易得AD的长,再在Rt△BCD中求出BD,相加可得AB的长.【题目详解】解:过C作CD⊥AB于D点,由题意可得,

∠ACD=30°,∠BCD=45°,AC=1.

在Rt△ACD中,cos∠ACD=,∴AD=AC=30,CD=AC•cos∠ACD=1×,在Rt△DCB中,∵∠BCD=∠B=45°,

∴CD=BD=30,∴AB=AD+BD=30+30.答:此时轮船所在的B处与小岛A的距离是(30+30)海里.

故答案为:(30+30).【题目点拨】此题主要考查了解直角三角形的应用-方向角问题,求三角形的边或高的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.17、1【分析】根据根与系数的关系可得出x1+x2=-3、x1x2=-1,将其代入x12+x22=(x1+x2)2-2x1x2中即可求出结论.【题目详解】解:∵x1,x2是方程的两个实数根,

∴x1+x2=-3,x1x2=-1,

∴x12+x22=(x1+x2)2-2x1x2=(-3)2-2×(-1)=1.

故答案为:1.【题目点拨】本题考查了一元二次方程的根与系数的关系,牢记两根之和等于-、两根之积等于是解题的关键.18、1【分析】根据相似三角形的性质得△ABC的周长:△DEF的周长=3:4,然后根据与的周长和为11即可计算出△ABC的周长.【题目详解】解:∵△ABC与△DEF的面积比为9:16,∴△ABC与△DEF的相似比为3:4,

∴△ABC的周长:△DEF的周长=3:4,∵与的周长和为11,

∴△ABC的周长=×11=1.

故答案是:1.【题目点拨】本题考查了相似三角形的性质:相似三角形(多边形)的周长的比等于相似比;相似三角形的面积的比等于相似比的平方.三、解答题(共66分)19、(1)∠ABD=∠ACD(或∠DAC=∠DBC);(2)四边形ACEF为正方形,理由见解析;(3)1【分析】(1)根据题意给出的性质即可得出一组角相等;(2)先证明四边形ACEF为菱形,再证明四边形ABCD为损矩形,根据损矩形的性质即可求出四边形ACEF是正方形;(3)过点D作DM⊥BC,过点E作EN⊥BC交BC的延长线于点N,可得△BDM为等腰直角三角形,从而得出△ABC≌△CNE根据性质即可得出BC的长.【题目详解】(1)由图1得:△ABD和△ADC有公共边AD,在AD同侧有∠ABD和∠ACD,此时∠ABD=∠ACD;故答案为:∠ABD=∠ACD(或∠DAC=∠DBC);(2)四边形ACEF为正方形证明:∵∠ABC=90°,BD平分∠ABC,∴∠ABD=∠CBD=45°,∵四边形ACEF为菱形,∴AE⊥CF,即∠ADC=90°,∵∠ABC=90°,∴四边形ABCD为损矩形,由(1)得∠ACD=∠ABD=45°,∴∠ACE=2∠ACD=90°,∴四边形ACEF为正方形.(3)过点D作DM⊥BC,过点E作EN⊥BC交BC的延长线于点N,∵∠DBM=45°,∴△BDM为等腰直角三角形,∴BM=DM=,∵AC=EC,∠ACE=90°,∠ABC=CNE=90°,∴∠ACB=∠CEN,∴△ABC≌△CNE(AAS),∴CN=AB=6,∵DM∥EN,AD=DE,∴BM=MN=8,∴BC=BN﹣CN=2BM﹣CN=1.【题目点拨】本题考查新定义下的图形计算,主要运用到矩形菱形正方形的性质,三角形全等的判定和性质,关键在于熟练掌握基础知识,合理利用辅助线得出条件计算.20、(1)证明见解析;(2).【分析】(1)利用圆周角定理及,求得∠ABC=30°,利用切线的性质求得∠D=30°,根据直角三角形30度角的性质从而证出;(2)先证得△OAC为等边三角形,求得的长,过点C作CM⊥AO于点M,证出△CME∽△FBE,求出,利用勾股定理求出,利用面积法即可求出.【题目详解】(1)连接BC,∵AB是⊙O的直径,,

∴∠ACB=90°,∠ABC=30°,∠BAC=60°,

∴,

∵BD切于点,

∴AB⊥DB,

∴∠D=90∠BAD=9060°=30°,∴AD=2AB,∴AD=4AC,∴;(2)连接OC,过点C作CM⊥AO于点M,∵∠BAC=60°,OA=OC,∴△OAC为等边三角形,∴AC=OA=OC=2,OM=MA=1,∵CM⊥AO,∴OM=MA==1,在中,,,∴,∵点为中点,∴,∴,∵BF切于点,

∴AB⊥FB,

∴∠FBE=90,∵∠FEB=∠CEM,∴,∴,即,∴,在中,,,,∴,∵AB是⊙O的直径

∴∠AGB=90°,∴BG⊥AF,∵,∴,∴【题目点拨】本题是圆的综合题,考查了切线的性质、相似三角形的判定与性质、圆周角定理、勾股定理以及三角形面积的计算,学会添加常用辅助线,熟练掌握圆周角定理,并能进行推理计算是解决问题的关键.21、(1)证明见解析;(2)BC=1;【分析】(1)连接OB,由圆周角定理得出∠ABC=90°,得出∠C+∠BAC=90°,再由OA=OB,得出∠BAC=∠OBA,证出∠PBA+∠OBA=90°,即可得出结论;(2)证明△ABC∽△PBO,得出对应边成比例,即可求出BC的长.【题目详解】(1)连接OB,如图所示:∵AC是⊙O的直径,∴∠ABC=90°,∴∠CBO+∠OBA=90°,∵OC=OB,∴∠C=∠CBO,∴∠C+∠OBA=90°,∵∠PBA=∠C,∴∠PBA+∠OBA=90°,即PB⊥OB,∴PB是⊙O的切线;(2)∵⊙O的半径为,∴OB=,AC=2,∵OP∥BC,∴∠C=∠CBO=∠BOP,又∵∠ABC=∠PBO=90°,∴△ABC∽△PBO,∴,即,∴BC=1.【题目点拨】本题考查了切线的判定与性质、圆周角定理、平行线的性质、相似三角形的判定与性质;熟练掌握圆周角定理、切线的判定是解决问题的关键.22、(1)3;(2)【分析】(1)由题意先计算绝对值、零指数幂,代入三角函数值,再进一步计算可得;(2)根据题意直接利用公式法进行求解即可.【题目详解】解:(1)|﹣2|+(π﹣3)1+2sin61°=2﹣+1+2×=2﹣+1+=3;(2)∵a=1,b=﹣3,c=﹣1,∴△=(﹣3)2﹣4×1×(﹣1)=13>1,则x=,即x1=,x2=.【题目点拨】本题主要考查含三角函数值的实数运算以及解一元二次方程,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.23、【解题分析】试题分析:计算两个底面的菱形的面积加上侧面四个矩形的面积即可求得直四棱柱的表面积.试题解析:∵俯视图是菱形,∴可求得底面菱形边长为2.5,上、下底面积和为6×2=12,侧面积为2.5×4×8=80∴直棱柱的表面积为24、(1)四边形;(2)详见解析;(3)【分析】(1)根据三角形相似的判定定理,得∆ABC~∆EAC,进而即可得到答案;(2)由旋转的性质得,,,结合,得,进而即可得到结论;(3)过点作于,得,根据三角形的面积得,结合∽,即可得到答案.【题目详解】(1)由题意得:,∴,∴∆ABC~∆EAC,∴被分割成的“友好四边形”的是:四边形,故答案是:四边形;(2)根据旋转的性质得,,,∵,∴,∴,∴∽,∴四边形是“友好四边形”;(3)过点作于,∴在中,,∵的面积为,∴,∴,∵四边形是被分割成的“友好四边形”,且,∴∽,∴,∴,∴.【题目点拨】本题主要考查相似三角形的判定和性质定理以及三角函数的定义,掌握三角形相似的判定和性质,是解题的关键.25、(1)证明见解析;(2).【分析】(1)连接OD,由角平分线和等边对等角,得到,则,即可得到结论成立;(2)连接,,,由勾股定理求出AD,然后证明,求出DE的长度,然后即可求出CE的长度.【题目详解】(1)证明,如图,连接.平分,.∵,....∵,..即.与相切.(2)如图,连接,,.是的直径,.在中,.∵,,.,即..∵,,,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论