




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
重庆市彭水一中学2024届数学九上期末复习检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.关于二次函数y=x2+2x+3的图象有以下说法:其中正确的个数是()①它开口向下;②它的对称轴是过点(﹣1,3)且平行于y轴的直线;③它与x轴没有公共点;④它与y轴的交点坐标为(3,0).A.1 B.2 C.3 D.42.已知二次函数的图象与轴有两个不同的交点,其横坐标分别为若且则()A. B. C. D.3.下列说法中,不正确的个数是()①直径是弦;②经过圆内一定点可以作无数条直径;③平分弦的直径垂直于弦;④过三点可以作一个圆;⑤过圆心且垂直于切线的直线必过切点.()A.1个 B.2个 C.3个 D.4个4.一元二次方程中至少有一个根是零的条件是()A.且 B. C.且 D.5.下列图形是我国国产品牌汽车的标识,在这些汽车标识中,是中心对称图形的是()A. B. C. D.6.下列语句中,正确的是()①相等的圆周角所对的弧相等;②同弧或等弧所对的圆周角相等;③平分弦的直径垂直于弦,并且平分弦所对的弧;④圆内接平行四边形一定是矩形.A.①② B.②③ C.②④ D.④7.下列事件中,是必然事件的是()A.抛掷一枚硬币正面向上 B.从一副完整扑克牌中任抽一张,恰好抽到红桃C.今天太阳从西边升起 D.从4件红衣服和2件黑衣服中任抽3件有红衣服8.已知二次函数图象如图所示,对称轴为过点且平行于轴的直线,则下列结论中正确的是()A. B. C. D.9.如图,已知正五边形内接于,连结相交于点,则的度数是()A. B. C. D.10.某闭合并联电路中,各支路电流与电阻成反比例,如图表示该电路与电阻的函数关系图象,若该电路中某导体电阻为,则导体内通过的电流为()A. B. C. D.11.已知二次函数y=ax2+bx+c(a≠0),当x=1时,函数y有最大值,设(x1,y1),(x2,y2)是这个函数图象上的两点,且1<x1<x2,那么()A.a>0,y1>y2B.a>0,y1<y2C.a<0,y1>y2D.a<0,y1<y212.下列各式正确的是()A. B.C. D.二、填空题(每题4分,共24分)13.把抛物线沿着轴向左平移3个单位得到的抛物线关系式是_________.14.把二次函数变形为的形式为_________.15.正方形ABCD的边长为4,圆C半径为1,E为圆C上一点,连接DE,将DE绕D顺时针旋转90°到DE’,F在CD上,且CF=3,连接FE’,当点E在圆C上运动,FE’长的最大值为____.16.张华在网上经营一家礼品店,春节期间准备推出四套礼品进行促销,其中礼品甲45元/套,礼品乙50元/套,礼品丙70元/套,礼品丁80元/套,如果顾客一次购买礼品的总价达到100元,顾客就少付x元,每笔订单顾客网上支付成功后,张华会得到支付款的80%.①当x=5时,顾客一次购买礼品甲和礼品丁各1套,需要支付_________元;②在促销活动中,为保证张华每笔订单得到的金额均不低于促销前总价的六折,则x的最大值为________.17.小华在距离路灯6米的地方,发现自己在地面上的影长是2米,若小华的身高为1.6米,那么路灯离地面的高度是_____米.18.如图是抛物线y1=ax2+bx+c(a≠0)图象的一部分,抛物线的顶点坐标A(1,3),与x轴的一个交点B(4,0),直线y2=mx+n(m≠0)与抛物线交于A,B两点,下列结论:①2a+b=0;②abc>0;③方程ax2+bx+c=3有两个相等的实数根;④抛物线与x轴的另一个交点是(﹣1,0);⑤当1<x<4时,有y2<y1,其中正确的是________.三、解答题(共78分)19.(8分)如图,已知一次函数的图象交反比例函数的图象于点和点,交轴于点.(1)求这两个函数的表达式;(2)求的面积;(3)请直接写出不等式的解集.20.(8分)一只不透明袋子中装有1个红球,2个黄球,这些球除颜色外都相同,小明搅匀后从中任意摸出一个球,记录颜色后放回、搅匀,再从中任意摸出1个球,用树状图或列表法列出摸出球的所有等可能情况,并求两次摸出的球都是黄色的概率.21.(8分)如图,在Rt△ABC中,∠C=90°,BC=5,AC=12,求∠A的正弦值、余弦值和正切值.22.(10分)如图,为了测量山坡上一棵树PQ的高度,小明在点A处利用测角仪测得树顶P的仰角为450,然后他沿着正对树PQ的方向前进10m到达B点处,此时测得树顶P和树底Q的仰角分别是600和300,设PQ垂直于AB,且垂足为C.(1)求∠BPQ的度数;(2)求树PQ的高度(结果精确到0.1m,)23.(10分)为了响应市政府号召,某校开展了“六城同创与我同行”活动周,活动周设置了“A:文明礼仪,B:生态环境,C:交通安全,D:卫生保洁”四个主题,每个学生选一个主题参与.为了解活动开展情况,学校随机抽取了部分学生进行调查,并根据调查结果绘制了如下条形统计图和扇形统计图.(1)本次随机调查的学生人数是______人;(2)请你补全条形统计图;(3)在扇形统计图中,“B”所在扇形的圆心角等于______度;(4)小明和小华各自随机参加其中的一个主题活动,请用画树状图或列表的方式求他们恰好选中同一个主题活动的概率.24.(10分)郑州市长跑协会为庆祝协会成立十周年,计划在元且期间进行文艺会演,陈老师按拟报项目歌曲舞蹈、语言、综艺进行统计,将统计结果绘成如图所示的两幅不完整的统计图.(1)请补全条形统计图;(2)语言类所占百分比为______,综艺类所在扇形的圆心角度数为______;(3)在前期彩排中,经过各位评委认真审核,最终各项目均有一队员得分最高,若从这四名队员(两男两女)中选择两人发表感言,求恰好选中一男一女的概率.25.(12分)已知,如图,在平行四边形ABCD中,M是BC边的中点,E是边BA延长线上的一点,连接EM,分别交线段AD于点F、AC于点G.(1)证明:∽(2)求证:;26.在下列的网格中,横、纵坐标均为整数的点叫做格点,例如正方形的顶点,都是格点.要求在下列问题中仅用无刻度的直尺作图.
(1)画出格点,连(或延长)交边于,使,写出点的坐标.(2)画出格点,连(或延长)交边于,使,则满足条件的格点有个.
参考答案一、选择题(每题4分,共48分)1、B【分析】直接利用二次函数的性质分析判断即可.【题目详解】①y=x2+2x+3,a=1>0,函数的图象的开口向上,故①错误;②y=x2+2x+3的对称轴是直线x==﹣1,即函数的对称轴是过点(﹣1,3)且平行于y轴的直线,故②正确;③y=x2+2x+3,△=22﹣4×1×3=﹣8<0,即函数的图象与x轴没有交点,故③正确;④y=x2+2x+3,当x=0时,y=3,即函数的图象与y轴的交点是(0,3),故④错误;即正确的个数是2个,故选:B.【题目点拨】本题考查二次函数的特征,解题的关键是熟练掌握根据二次函数解析式求二次函数的开口方向、对称轴、与坐标轴的交点坐标.2、C【分析】首先根据二次函数开口向下与轴有两个不同的交点,得出,然后再由对称轴即可判定.【题目详解】由已知,得二次函数开口向下,与轴有两个不同的交点,∴∵且∴其对称轴∴故答案为C.【题目点拨】此题主要考查二次函数图象的性质,熟练掌握,即可解题.3、C【分析】①根据弦的定义即可判断;
②根据圆的定义即可判断;
③根据垂径定理的推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧即可判断;
④确定圆的条件:不在同一直线上的三点确定一个圆即可判断;
⑤根据切线的性质:经过圆心且垂直于切线的直线必经过切点即可判断.【题目详解】解:①直径是特殊的弦.所以①正确,不符合题意;
②经过圆心可以作无数条直径.所以②不正确,符合题意;
③平分弦(不是直径)的直径垂直于弦.所以③不正确,符合题意;
④过不在同一条直线上的三点可以作一个圆.所以④不正确,符合题意;
⑤过圆心且垂直于切线的直线必过切点.所以⑤正确,不符合题意.
故选:C.【题目点拨】本题考查了切线的性质、垂径定理、确定圆的条件,解决本题的关键是掌握圆的相关定义和性质.4、D【分析】代入,求得一元二次方程需满足的条件.【题目详解】由题意得,一元二次方程存在一个根代入到中解得故答案为:D.【题目点拨】本题考查了一元二次方程的解法,掌握解一元二次方程的方法是解题的关键.5、B【解题分析】由中心对称图形的定义:“把一个图形绕一个点旋转180°后,能够与自身完全重合,这样的图形叫做中心对称图形”分析可知,上述图形中,A、C、D都不是中心对称图形,只有B是中心对称图形.故选B.6、C【分析】根据圆周角定理、垂径定理、圆内接四边形的性质定理判断.【题目详解】①在同圆或等圆中,相等的圆周角所对的弧相等,本说法错误;②同弧或等弧所对的圆周角相等,本说法正确;③平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧,本说法错误;④圆内接平行四边形一定是矩形,本说法正确;故选:C.【题目点拨】本题考查的是命题的真假判断,掌握圆周角定理、垂径定理、圆内接四边形的性质定理是解题的关键.7、D【分析】必然事件是指在一定条件下一定会发生的事件,根据事件发生的可能性大小判断相应事件的类型即可.【题目详解】解:A、抛掷一枚硬币正面向上,是随机事件,故本选项错误;
B、从一副完整扑克牌中任抽一张,恰好抽到红桃,是随机事件.故本选项错误;
C、今天太阳从西边升起,是不可能事件,故本选项错误;
D、从4件红衣服和2件黑衣服中任抽3件有红衣服,是必然事件,故本选项正确.
故选:D.【题目点拨】本题考查了事件发生的可能性,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.8、D【分析】由抛物线开口向上,与y轴交于负半轴,对称轴在y轴左侧即可判断a、c、b的符号,进而可判断A项;抛物线的对称轴为直线x=﹣,结合抛物线的对称轴公式即可判断B项;由图象可知;当x=1时,a+b+c<0,再结合B项的结论即可判断C项;由(1,0)与(﹣2,0)关于抛物线的对称轴对称,可知当x=-2时,y<0,进而可判断D项.【题目详解】解:A、∵抛物线开口向上,与y轴交于负半轴,对称轴在y轴左侧,∴a>0,c<0,<0,∴b>0,∴abc<0,所以本选项错误;B、∵抛物线的对称轴为直线x=﹣,∴,∴a﹣b=0,所以本选项错误;C、∵当x=1时,a+b+c<0,且a=b,∴,所以本选项错误;D、∵(1,0)与(﹣2,0)关于抛物线的对称轴对称,且当x=1时,y<0,∴当x=-2时,y<0,即4a﹣2b+c<0,∴,所以本选项正确.故选:D.【题目点拨】本题考查了二次函数的图象与性质,属于常考题型,熟练掌握抛物线的性质是解题关键.9、C【分析】连接OA、OB、OC、OD、OE,如图,则由正多边形的性质易求得∠COD和∠BOE的度数,然后根据圆周角定理可得∠DBC和∠BCF的度数,再根据三角形的内角和定理求解即可.【题目详解】解:连接OA、OB、OC、OD、OE,如图,则∠COD=∠AOB=∠AOE=,∴∠BOE=144°,∴,,∴.故选:C.【题目点拨】本题考查了正多边形和圆、圆周角定理和三角形的内角和定理,属于基本题型,熟练掌握基本知识是解题关键.10、B【分析】电流I(A)与电阻R(Ω)成反比例,可设I=,根基图象得到图象经过点(5,2),代入解析式就得到k的值,从而能求出解析式.【题目详解】解:可设,根据题意得:,解得k=10,∴.当R=4Ω时,(A).故选B.【题目点拨】本题主要考查的是反比例函数的应用,利用待定系数法是求解析式时常用的方法.11、C【解题分析】由当x=2时,函数y有最大值,根据抛物线的性质得a<0,抛物线的对称轴为直线x=2,当x>2时,y随x的增大而减小,所以由2<x2<x2得到y2>y2.【题目详解】∵当x=2时,函数y有最大值,∴a<0,抛物线的对称轴为直线x=2.∵2<x2<x2,∴y2>y2.故选C.【题目点拨】本题考查了二次函数图象上点的坐标特征:二次函数图象上的点满足其解析式.也考查了二次函数的性质.12、B【分析】根据二次根式的性质,同类二次根式的定义,以及二次根式的除法,分别进行判断,即可得到答案.【题目详解】解:A、无法计算,故A错误;B、,故B正确;C、,故C错误;D、,故D错误;故选:B.【题目点拨】本题考查了二次根式的性质,同类二次根式的定义,解题的关键是熟练掌握二次根式的性质进行解题.二、填空题(每题4分,共24分)13、【分析】先求出平移后的抛物线的顶点坐标,再利用顶点式,写出抛物线解析式,即可.【题目详解】由题意知:抛物线的顶点坐标是(0,1).∵抛物线向左平移3个单位∴顶点坐标变为(-3,1).∴得到的抛物线关系式是.故答案为.【题目点拨】本题主要考查了二次函数图像与几何变换,正确掌握二次函数图像与几何变换是解题的关键.14、【分析】利用配方法变形即可.【题目详解】解:故答案为:【题目点拨】本题考查了二次函数的的解析式,熟练掌握配方法是解题的关键.15、【分析】先作出FE’最大时的图形,再利用勾股定理即可求解.【题目详解】解:如下图,过点F作FP⊥AB于P,延长DP到点E’,使PE’=1,此时FE’长最大,由题可知,PF=4,DF=1,∴DP==,∴FE’=,故答案是:【题目点拨】本题考查了图形的旋转,圆的基本性质,勾股定理的应用,中等难度,准确找到点P的位置是解题关键.16、125【分析】①当x=5时,顾客一次购买礼品甲和礼品丁各1套,需要支付45+80-5=1元.②设顾客每笔订单的总价为M元,当0<M<100时,张军每笔订单得到的金额不低于促销前总价的六折,当M≥100时,0.8(M-x)≥0.6M,对M≥100恒成立,由此能求出x的最大值.【题目详解】解:(1)当x=5时,顾客一次购买礼品甲和礼品丁各1套,需要支付:45+80-5=1元.故答案为:1.(2)设顾客一次购买干果的总价为M元,当0<M<100时,张军每笔订单得到的金额不低于促销前总价的六折,当M≥100时,0.8(M-x)≥0.6M,解得,0.8x≤0.2M.∵M≥100恒成立,∴0.8x≤200解得:x≤25.故答案为25.【题目点拨】本题考查代数值的求法,考查函数性质在生产、生活中的实际应用等基础知识,考查运算求解能力和应用意识,是中档题.17、6.1【解题分析】解:设路灯离地面的高度为x米,根据题意得:,解得:x=6.1.故答案为6.1.18、①③⑤【解题分析】①根据拋物线的开口方向以及对称轴为x=1,即可得出a、b之间的关系以及ab的正负,由此得出①正确,根据抛物线与y轴的交点在y轴正半轴上,可知c为正结合a<0、b>0即可得出②错误,将抛物线往下平移3个单位长度可知抛物线与x轴只有一个交点从而得知③正确,根据拋物线的对称性结合抛物线的对称轴为x=1以及点B的坐标,即可得出抛物线与x轴的另一交点坐标,④正确,⑤根据两函数图象的上下位置关系即可解题.【题目详解】∵抛物线的顶点坐标A(1,3),∴对称轴为x=-=1,∴2a+b=0,①正确,∵a,b,抛物线与y轴交于正半轴,∴c∴abc0,②错误,∵把抛物线向下平移3个单位长度得到y=ax2+bx+c-3,此时抛物线的顶点也向下平移3个单位长度,∴顶点坐标为(1,0),抛物线与x轴只有一个交点,即方程ax2+bx+c=3有两个相等的实数根,③正确.∵对称轴为x=-=1,与x轴的一个交点为(4,0),根据对称性质可知与x轴的另一个交点为(-2,0),④错误,由抛物线和直线的图像可知,当1<x<4时,有y2<y1.,⑤正确.【题目点拨】本题考查了二次函数的图像和性质,熟悉二次函数的性质是解题关键.三、解答题(共78分)19、(1)y=x﹣6;(2)△AOB的面积为6;(3)由图象知,0<x<2或x>1.【分析】(1)先把点A的坐标代入反比例函数表达式,从而的反比例函数解析式,再求点B的坐标,然后代入反比例函数解析式求出点B的坐标,再利用待定系数法求解即可;
(2)根据三角形的面积公式计算即可;(3)观察函数图象即可求出不等式的解集.【题目详解】(1)把A(2,﹣1)的坐标代入,得,∴1﹣2m=﹣8,反比例函数的表达式是y=﹣;把B(n,﹣2)的坐标代入y=﹣得,-2=﹣,解得:n=1,∴B点坐标为(1,﹣2),把A(2,﹣1)、B(1,﹣2)的坐标代入y=kx+b得,解得,∴一次函数表达式为y=x﹣6;(2)当y=0时,x=0+6=6,∴OC=6,∴△AOB的面积=×6×1﹣×6×2=6;(3)由图象知,0<x<2或x>1.【题目点拨】本题主要考查了反比例函数图象与一次函数图象的交点问题以及观察图象的能力,待定系数法求函数解析式,求出点B的坐标是解题的关键,也是本题的难点.20、【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次摸出的球都是黄球的情况,再利用概率公式即可求得答案.【题目详解】解:画树状图得:∵共有9种可能的结果,两次摸出的球都是黄球的有4种情况,∴两次摸出的球都是红球的概率为:.【题目点拨】此题考查了用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.解题关键是求出总情况和所求事件情况数.21、sinA=,cosA=,tanA=.【分析】根据勾股定理求出AB,根据锐角三角函数的定义解答即可.【题目详解】由勾股定理得,,则,,.【题目点拨】本题考查解直角三角形,解题的关键是利用勾股定理求出AB的长.22、(1)∠BPQ=30°;(2)树PQ的高度约为15.8m.【分析】(1)根据题意题可得:∠A=45°,∠PBC=60°,∠QBC=30°,AB=10m,在Rt△PBC中,根据三角形内角和定理即可得∠BPQ度数;(2)设CQ=x,在Rt△QBC中,根据30度所对的直角边等于斜边的一半得BQ=2x,由勾股定理得BC=x;根据角的计算得∠PBQ=∠BPQ=30°,由等角对等边得PQ=BQ=2x,用含x的代数式表示PC=PQ+QC=3x,AC=AB+BC=10+x,又∠A=45°,得出AC=PC,建立方程解之求出x,再将x值代入PQ代数式求之即可.【题目详解】(1)依题可得:∠A=45°,∠PBC=60°,∠QBC=30°,AB=10m,在Rt△PBC中,∵∠PBC=60°,∠PCB=90°,∴∠BPQ=30°;(2)设CQ=x,在Rt△QBC中,∵∠QBC=30°,∠QCB=90°,∴BQ=2x,BC=x,又∵∠PBC=60°,∠QBC=30°,∴∠PBQ=30°,由(1)知∠BPQ=30°,∴PQ=BQ=2x,∴PC=PQ+QC=3x,AC=AB+BC=10+x,又∵∠A=45°,∴AC=PC,即3x=10+x,解得:x=,∴PQ=2x=≈15.8(m),答:树PQ的高度约为15.8m.【题目点拨】本题考查了解直角三角形的应用,涉及到三角形的内角和定理、等腰三角形的性质、含30度角的直角三角形的性质等,准确识图是解题的关键.23、(1)60;(2)见解析;(3)108;(4).【分析】(1)用A的人类除以A所占的百分比即可求得答案;(2)求出c的人数,补全统计图即可;(3)用360度乘以B所占的比例即可得;(4)画树状图得到所有等可能的情况数,找出符合条件的情况数,利用概率公式求解即可.【题目详解】(1)本次随机调查的学生人数人
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年环境工程师职业资格考试题及答案
- 社区考试题简答题及答案
- 财务会计准则实操试题及答案
- 西方政治制度中的利益集团作用分析试题及答案
- 机电工程新兴技术应用试题及答案
- 知识共享政策的实施与效果评估试题及答案
- 软件设计师考试关键思考点试题及答案
- 网络流量监控的趋势与试题及答案
- 意识到考试复习的重要内容试题及答案
- 网络策略与商业价值关系分析试题及答案
- 专题06手拉手模型(原卷版+解析)
- 国家开放大学本科《管理英语3》一平台机考真题及答案总题库珍藏版
- 20万吨高塔造粒颗粒硝酸铵工艺安全操作规程
- CJJ82-2012 园林绿化工程施工及验收规范
- 江苏省南京市2022-2023学年四年级下学期数学期末试卷(含答案)
- 江苏省南京市建邺区2022-2023学年五年级下学期期末数学试卷
- 提高感染性休克集束化治疗完成率工作方案
- 肝硬化病人健康宣教课件
- 心力衰竭病人的护理课件
- 0-3岁儿童适应性行为的发展与教育
- 【多功能自动跑步机机械结构设计4800字(论文)】
评论
0/150
提交评论