河北省沧州任丘市2024届数学九年级第一学期期末考试模拟试题含解析_第1页
河北省沧州任丘市2024届数学九年级第一学期期末考试模拟试题含解析_第2页
河北省沧州任丘市2024届数学九年级第一学期期末考试模拟试题含解析_第3页
河北省沧州任丘市2024届数学九年级第一学期期末考试模拟试题含解析_第4页
河北省沧州任丘市2024届数学九年级第一学期期末考试模拟试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

河北省沧州任丘市2024届数学九年级第一学期期末考试模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.已知反比例函数的图象经过点(2,-2),则k的值为A.4 B. C.-4 D.-22.如图,在Rt△ABC中,∠ACB=90°,如果AC=3,AB=5,那么sinB等于()A. B. C. D.3.下列图案中,是中心对称图形的是()A. B.

C. D.4.如图,在△OAB中,顶点O(0,0),A(﹣3,4),B(3,4),将△OAB与正方形ABCD组成的图形绕点O逆时针旋转,每次旋转90°,则第2019次旋转结束时,点D的坐标为()A.(3,﹣10) B.(10,3) C.(﹣10,﹣3) D.(10,﹣3)5.在一个不透明的袋子中,装有红球、黄球、篮球、白球各1个,这些球除颜色外无其他差别,从袋中随机取出一个球,取出红球的概率为()A.

B.

C.

D.16.如图,AB为⊙O的弦,AB=8,OC⊥AB于点D,交⊙O于点C,且CD=1,则⊙O的半径为()A.8.5 B.7.5 C.9.5 D.87.一组数据3,1,4,2,-1,则这组数据的极差是()A.5 B.4 C.3 D.28.在一个晴朗的上午,小丽拿着一块矩形木板在阳光下做投影实验,矩形木板在地面上形成的投影不可能是()A. B.C. D.9.下列说法中正确的是()A.必然事件发生的概率是0B.“任意画一个等边三角形,其内角和是180°”是随机事件C.投一枚图钉,“钉尖朝上”的概率不能用列举法求得D.如果明天降水的概率是50%,那么明天有半天都在下雨10.如图,是的直径,,是圆周上的点,且,则图中阴影部分的面积为()A. B. C. D.11.如图,分别与相切于点,为上一点,,则()A. B. C. D.12.为考察两名实习工人的工作情况,质检部将他们工作第一周每天生产合格产品的个数整理成甲,乙两组数据,如下表:甲26778乙23488关于以上数据,说法正确的是()A.甲、乙的众数相同 B.甲、乙的中位数相同C.甲的平均数小于乙的平均数 D.甲的方差小于乙的方差二、填空题(每题4分,共24分)13.圆锥的母线长为5cm,高为4cm,则该圆锥的全面积为_______cm2.14.抛物线y=x2+2x+3的顶点坐标是_____________.15.抛物线y=x2﹣4x+3与x轴两个交点之间的距离为_____.16.请写出一个位于第一、三象限的反比例函数表达式,y=.17.在一只不透明的口袋中放入只有颜色不同的白色球3个,黑色球5个,黄色球n个,搅匀后随机从中摸取一个恰好是白色球的概率为,则放入的黄色球数n=_________.18.如图,在△ABC和△APQ中,∠PAB=∠QAC,若再增加一个条件就能使△APQ∽△ABC,则这个条件可以是________.三、解答题(共78分)19.(8分)某中学课外兴趣活动小组准备围建一个矩形苗圃,其中一边靠墙,另外三边用长为30米的篱笆围成.已知墙长为18米(如图所示),设这个苗圃垂直于墙的一边长为x米.(1)若苗圃的面积为72平方米,求x的值;(2)这个苗圃的面积能否是120平方米?请说明理由.20.(8分)取什么值时,关于的方程有两个相等的实数根?求出这时方程的根.21.(8分)如图,为⊙的直径,为⊙上一点,为的中点.过点作直线的垂线,垂足为,连接.(1)求证:;(2)与⊙有怎样的位置关系?请说明理由.22.(10分)如图,在平面直角坐标系中,△ABC的顶点坐标分别为A(-2,4),B(4,4),C(6,0).(1)△ABC的面积是.(2)请以原点O为位似中心,画出△A'B'C',使它与△ABC的相似比为1:2,变换后点A、B的对应点分别为点A'、B',点B'在第一象限;(3)若P(a,b)为线段BC上的任一点,则变换后点P的对应点P'的坐标为.23.(10分)如图,在圆中,弦,点在圆上(与,不重合),联结、,过点分别作,,垂足分别是点、.(1)求线段的长;(2)点到的距离为3,求圆的半径.24.(10分)(2015德阳)大华服装厂生产一件秋冬季外套需面料1.2米,里料0.8米,已知面料的单价比里料的单价的2倍还多10元,一件外套的布料成本为76元.(1)求面料和里料的单价;(2)该款外套9月份投放市场的批发价为150元/件,出现购销两旺态势,10月份进入批发淡季,厂方决定采取打折促销.已知生产一件外套需人工等固定费用14元,为确保每件外套的利润不低于30元.①设10月份厂方的打折数为m,求m的最小值;(利润=销售价﹣布料成本﹣固定费用)②进入11月份以后,销售情况出现好转,厂方决定对VIP客户在10月份最低折扣价的基础上实施更大的优惠,对普通客户在10月份最低折扣价的基础上实施价格上浮.已知对VIP客户的降价率和对普通客户的提价率相等,结果一个VIP客户用9120元批发外套的件数和一个普通客户用10080元批发外套的件数相同,求VIP客户享受的降价率.25.(12分)计算:26.佩佩宾馆重新装修后,有间房可供游客居住,经市场调查发现,每间房每天的定价为元,房间会全部住满,当每间房每天的定价每增加元时,就会有一间房空闲,如果游客居住房间,宾馆需对每间房每天支出元的各项费用.设每间房每天的定价增加元,宾馆获利为元.(1)求与的函数关系式(不用写出自变量的取值范围);(2)物价部门规定,春节期间客房定价不能高于平时定价的倍,此时每间房价为多少元时宾馆可获利元?

参考答案一、选择题(每题4分,共48分)1、C【解题分析】∵反比例函数的图象经过点(2,-2),∴.故选C.2、A【解题分析】直接利用锐角三角函数关系得出sinB的值.【题目详解】∵在Rt△ABC中,∠ACB=90°,AC=3,AB=5,∴sinB=故选A.【题目点拨】此题主要考查了锐角三角函数关系,正确把握定义是解题关键.3、D【分析】根据中心对称图形的定义逐一进行分析判断即可.【题目详解】A、不是中心对称图形,故不符合题意;B、不是中心对称图形,故不符合题意;C、不是中心对称图形,故不符合题意;D、是中心对称图形,故符合题意,故选D.【题目点拨】本题考查了中心对称图形的识别,熟练掌握中心对称图形的概念是解题的关键.4、C【分析】先求出AB=1,再利用正方形的性质确定D(-3,10),由于2019=4×504+3,所以旋转结束时,相当于△OAB与正方形ABCD组成的图形绕点O顺时针旋转3次,由此求出点D坐标即可.【题目详解】∵A(﹣3,4),B(3,4),∴AB=3+3=1.∵四边形ABCD为正方形,∴AD=AB=1,∴D(﹣3,10).∵2019=4×504+3,∴每4次一个循环,第2019次旋转结束时,相当于△OAB与正方形ABCD组成的图形绕点O顺时针旋转3次,每次旋转,刚好旋转到如图O的位置.∴点D的坐标为(﹣10,﹣3).故选:C.【题目点拨】本题考查了坐标与图形变化-旋转:图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,10°,90°,180°.5、C【题目详解】解:∵共有4个球,红球有1个,∴摸出的球是红球的概率是:P=.故选C.【题目点拨】本题考查概率公式.6、A【解题分析】根据垂径定理得到直角三角形,求出的长,连接,得到直角三角形,然后在直角三角形中计算出半径的长.【题目详解】解:如图所示:连接,则长为半径.∵于点,∴,∵在中,,∴,∴,故答案为A.【题目点拨】本题主要考查垂径定理和勾股定理.根据垂径定理“垂直于弦的直径平分弦,并且平分弦所对的弧”得到一直角边,利用勾股定理列出关于半径的等量关系是解题关键.7、A【分析】根据极差的定义进行计算即可.【题目详解】这组数据的极差为:4-(-1)=5.故选A.【题目点拨】本题考查极差,掌握极差的定义:一组数据中最大数据与最小数据的差,是解题的关键.8、A【解题分析】解:将矩形木框立起与地面垂直放置时,形成B选项的影子;将矩形木框与地面平行放置时,形成C选项影子;将木框倾斜放置形成D选项影子;根据同一时刻物高与影长成比例,又因矩形对边相等,因此投影不可能是A选项中的梯形,因为梯形两底不相等.故选A.9、C【分析】根据必然事件、随机事件的概念以及概率的求解方法依次判断即可.【题目详解】解:A、必然事件发生的概率为1,故选项错误;B、“任意画一个等边三角形,其内角和是180°”是必然事件,故选项错误;C、投一枚图钉,“钉尖朝上”和“钉尖朝下”不是等可能事件,因此概率不能用列举法求得,选项正确;D、如果明天降水的概率是50%,是表示降水的可能性,与下雨时长没关系,故选项错误.故选:C.【题目点拨】本题考查了必然事件、随机事件和概率的理解,掌握概率的有关知识是解题的关键.10、D【分析】连接OC,过点C作CE⊥OB于点E,根据圆周角定理得出,则有是等边三角形,然后利用求解即可.【题目详解】连接OC,过点C作CE⊥OB于点E∴是等边三角形故选:D.【题目点拨】本题主要考查圆周角定理及扇形的面积公式,掌握圆周角定理及扇形的面积公式是解题的关键.11、A【分析】连接OA,OB,根据切线的性质定理得到∠OAP=90°,∠OBP=90°,根据四边形的内角和等于360°求出∠AOB,最后根据圆周角定理解答.【题目详解】解:连接OA,OB,

∵PA,PB分别与⊙O相切于A,B点,

∴∠OAP=90°,∠OBP=90°,

∴∠AOB=360°-90°-90°-66°=114°,

由圆周角定理得,∠C=∠AOB=57°,

故选:A.【题目点拨】本题考查的是切线的性质、圆周角定理,掌握在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半是解题的关键.12、D【分析】分别根据众数、中位数、平均数、方差的定义进行求解后进行判断即可得.【题目详解】甲:数据7出现了2次,次数最多,所以众数为7,排序后最中间的数是7,所以中位数是7,,=4.4,乙:数据8出现了2次,次数最多,所以众数为8,排序后最中间的数是4,所以中位数是4,,=6.4,所以只有D选项正确,故选D.【题目点拨】本题考查了众数、中位数、平均数、方差,熟练掌握相关定义及求解方法是解题的关键.二、填空题(每题4分,共24分)13、14π【分析】利用圆锥的母线长和圆锥的高求得圆锥的底面半径,表面积=底面积+侧面积=π×底面半径1+底面周长×母线长÷1.【题目详解】解:∵圆锥母线长为5cm,圆锥的高为4cm,∴底面圆的半径为3,则底面周长=6π,∴侧面面积=×6π×5=15π;∴底面积为=9π,∴全面积为:15π+9π=14π.故答案为14π.【题目点拨】本题利用了圆的周长公式和扇形面积公式求解.14、(﹣1,2)【题目详解】解:将二次函数转化成顶点式可得:y=,则函数的顶点坐标为(-1,2)故答案为:(-1,2)【题目点拨】本题考查二次函数的顶点坐标.15、2.【解题分析】令y=0,可以求得相应的x的值,从而可以求得抛物线与x轴的交点坐标,进而求得抛物线y=x2﹣4x+3与x轴两个交点之间的距离.【题目详解】∵抛物线y=x2﹣4x+3=(x﹣3)(x﹣2),∴当y=0时,0=(x﹣3)(x﹣2),解得:x2=3,x2=2.∵3﹣2=2,∴抛物线y=x2﹣4x+3与x轴两个交点之间的距离为2.故答案为:2.【题目点拨】本题考查了抛物线与x轴的交点,解答本题的关键是明确题意,利用二次函数的性质解答.16、(答案不唯一).【题目详解】设反比例函数解析式为,∵图象位于第一、三象限,∴k>0,∴可写解析式为(答案不唯一).考点:1.开放型;2.反比例函数的性质.17、1

【分析】根据口袋中装有白球3个,黑球5个,黄球n个,故球的总个数为3+5+n,再根据黄球的概率公式列式解答即可.【题目详解】∵口袋中装有白球3个,黑球5个,黄球n个,∴球的总个数为3+5+n,∵从中随机摸出一个球,摸到白色球的概率为,即,解得:n=1,故答案为:1.【题目点拨】本题主要考查概率公式,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.18、∠P=∠B(答案不唯一)【分析】要使△APQ∽△ABC,在这两三角形中,由∠PAB=∠QAC可知∠PAQ=∠BAC,还需的条件可以是∠B=∠P或∠C=∠Q或.【题目详解】解:这个条件为:∠B=∠P

∵∠PAB=∠QAC,

∴∠PAQ=∠BAC

∵∠B=∠P,

∴△APQ∽△ABC,故答案为:∠B=∠P或∠C=∠Q或.【题目点拨】本题考查了相似三角形的判定与性质的运用,掌握相似三角形的判定与性质是解题的关键.三、解答题(共78分)19、(1)x的值为12;(2)这个苗圃的面积不能是120平方米,理由见解析.【分析】(1)用x表示出矩形的长为30-2x,利用矩形面积公式建立方程求解,根据平行于墙的边长不能大于18米,舍去不符合题意的解;(2)根据面积120平方米建立方程,若方程有解,则可以达到120平米,否则不能.【题目详解】解:(1)根据题意得,化简得,或∴,当时,平行于墙的一边为30-2x=6<18,符合题意;当时,平行于墙的一边为30-2x=24>18,不符合题意,舍去.故x的值为12.(2)根据题意得化简得,∴方程无实数根故这个苗圃的面积不能是120平方米.【题目点拨】本题考查一元二次方程的应用:面积问题,根据面积公式列出一元二次方程是解题的关键.20、k=2或10时,当k=2时,x1=x2=,当k=10时,x1=x2=【分析】根据题意,得判别式△=[-(k+2)]2-4×4×(k-1)=0,解此一元二次方程即可求得k的值;然后代入k,利用直接开平方法,即可求得这时方程的根.【题目详解】解:∵关于x的方程4x2-(k+2)x+k-1=0有两个相等的实数根,∴△=[-(k+2)]2-4×4×(k-1)=k2-12k+20=0,解得:k1=2,k2=10∴k=2或10时,关于x的方程4x2-(k+2)x+k-1=0有两个相等的实数根.当k=2时,原方程为:4x2-4x+1=0,即(2x-1)2=0,解得:x1=x2=;当k=10时,原方程为:4x2-12x+9=0,即(2x-3)2=0,解得:x1=x2=;【题目点拨】此题考查了一元二次方程根的判别式与一元二次方程的解法.此题难度不大,解题的关键是掌握一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.21、(1)见解析;(2)与⊙相切,理由见解析.【分析】(1)连接,由为的中点,得到,根据圆周角定理即可得到结论;(2)根据平行线的判定定理得到,根据平行线的性质得到于是得到结论.【题目详解】(1)连接,为的中点,∴,,,;(2)与⊙相切,理由如下:,,∴∠ODE+∠E=180°,,∴∠E=90°,∴∠ODE=90°,,又∵OD是半径,与⊙相切.【题目点拨】本题考查了直线与圆的位置关系,圆心角、弧、弦的关系,圆周角定理,熟练掌握切线的判定定理是解题的关键.22、(1)12;(2)作图见详解;(3).【分析】(1)先以AB为底,计算三角形的高,利用面积公式即可求出△ABC的面积;(2)根据题意利用位似中心相关方法,画出△A'B'C',使它与△ABC的相似比为1:2即可;(3)根据(2)的作图,利用相似比为1:2,直接观察即可得到答案.【题目详解】解:(1)由△ABC的顶点坐标分别为A(-2,4),B(4,4),C(6,0),可知底AB=6,高为4,所以△ABC的面积为12;(2);(3)根据相似比为1:2,可知P.【题目点拨】本题主要考查作图-位似变换,解题的关键是掌握位似变换的定义和性质,并据此得出变换后的对应点.23、(1);(2)圆的半径为1.【分析】(1)利用中位线定理得出,从而得出DE的长.(2)过点作,垂足为点,,联结,求解出AH的值,再利用勾股定理,求出圆的半径.【题目详解】解(1)∵经过圆心,∴同理:∴是的中位线∴∵∴(2)过点作,垂足为点,,联结∵经过圆心∴∵∴在中,∴即圆的半径为1.【题目点拨】本题考查了三角形的中位线定理以及勾股定理的运用,是较为典型的圆和三角形的例题.24、(1)面料的单价为3元/米,里料的单价为2元/米;(2)①5;②5%.【分析】(1)、设里料的单价为x元/米,面料的单价为(2x+10)元/米,根据

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论