2024届内蒙古赤峰市宁城县数学九上期末学业质量监测模拟试题含解析_第1页
2024届内蒙古赤峰市宁城县数学九上期末学业质量监测模拟试题含解析_第2页
2024届内蒙古赤峰市宁城县数学九上期末学业质量监测模拟试题含解析_第3页
2024届内蒙古赤峰市宁城县数学九上期末学业质量监测模拟试题含解析_第4页
2024届内蒙古赤峰市宁城县数学九上期末学业质量监测模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届内蒙古赤峰市宁城县数学九上期末学业质量监测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.如图所示的工件的主视图是()A. B. C. D.2.如图,在圆内接四边形ABCD中,∠A:∠C=1:2,则∠A的度数等于()A.30° B.45° C.60° D.80°3.抛物线y=(x+2)2﹣2的顶点坐标是()A.(2,﹣2) B.(2,2) C.(﹣2,2) D.(﹣2,﹣2)4.已知一个菱形的周长是,两条对角线长的比是,则这个菱形的面积是()A. B. C. D.5.公园有一块正方形的空地,后来从这块空地上划出部分区域栽种鲜花(如图),原空地一边减少了1m,另一边减少了2m,剩余空地的面积为18m2,求原正方形空地的边长.设原正方形的空地的边长为xm,则可列方程为()A.(x+1)(x+2)=18 B.x2﹣3x+16=0 C.(x﹣1)(x﹣2)=18 D.x2+3x+16=06.在相同的时刻,太阳光下物高与影长成正比.如果高为1.5米的人的影长为2.5米,那么影长为30米的旗杆的高是().A.18米

B.16米

C.20米

D.15米7.平移抛物线y=﹣(x﹣1)(x+3),下列哪种平移方法不能使平移后的抛物线经过原点()A.向左平移1个单位 B.向上平移3个单位C.向右平移3个单位 D.向下平移3个单位8.如图,小江同学把三角尺含有角的一端以不同的方向穿入进另一把三角尺(含有角)的孔洞中,已知孔洞的最长边为,则三角尺穿过孔洞部分的最大面积为()A. B. C. D.9.在一个不透明的口袋中,装有若干个红球和9个黄球,它们只有颜色不同,摇匀后从中随机摸出一个球,记下颜色后再放回口袋中,通过大量重复摸球试验发现,摸到黄球的频率是0.3,则估计口袋中大约有红球()A.21个 B.14个 C.20个 D.30个10.下列图形中一定是相似形的是()A.两个菱形 B.两个等边三角形 C.两个矩形 D.两个直角三角形11.两个相似三角形的对应边分别是15cm和23cm,它们的周长相差40cm,则这两个三角形的周长分别是()A.45cm,85cm B.60cm,100cm C.75cm,115cm D.85cm,125cm12.某汽车行驶时的速度v(米/秒)与它所受的牵引力F(牛)之间的函数关系如图所示.当它所受牵引力为1200牛时,汽车的速度为()A.180千米/时 B.144千米/时 C.50千米/时 D.40千米/时二、填空题(每题4分,共24分)13.方程2x2-x=0的根是______.14.已知一个圆锥底面圆的半径为6cm,高为8cm,则圆锥的侧面积为_____cm1.(结果保留π)15.如图,AB是⊙O的直径,C、D为⊙O上的点,P为圆外一点,PC、PD均与圆相切,设∠A+∠B=130°,∠CPD=β,则β=_____.16.如图,在△ABC中,点DE分别在ABAC边上,DE∥BC,∠ACD=∠B,若AD=2BD,BC=6.则线段CD的长为______17.若圆锥的底面周长是10,侧面展开后所得的扇形圆心角为90°,则该圆锥的侧面积是__________。18.如图,⊙O的半径为2,AB是⊙O的切线,A.为切点.若半径OC∥AB,则阴影部分的面积为________.三、解答题(共78分)19.(8分)如图,点A、B、C在⊙O上,用无刻度的直尺画图.(1)在图①中,画一个与∠B互补的圆周角;(2)在图②中,画一个与∠B互余的圆周角.20.(8分)解方程:x(x﹣3)+6=2x.21.(8分)某商店准备进一批季节性小家电,单价40元.经市场预测,销售定价为52元时,可售出180个;定价每增加1元,销售量将减少10个.商店若准备获利2000元,则售价应定为多少?这时应进货多少个?22.(10分)某养殖场计划用96米的竹篱笆围成如图所示的①、②、③三个养殖区域,其中区域①是正方形,区域②和③是矩形,且AG∶BG=3∶1.设BG的长为1x米.(1)用含x的代数式表示DF=;(1)x为何值时,区域③的面积为180平方米;(3)x为何值时,区域③的面积最大?最大面积是多少?23.(10分)如图,一次函数y=kx+b的图象与反比例函数y=的图象交于A(﹣2,1),B(1,n)两点.(1)求反比例函数和一次函数的解析式;(2)根据图象写出使一次函数的值>反比例函数的值的x的取值范围.24.(10分)一个箱子里有4瓶牛奶,其中有一瓶是过期的,且这4瓶牛奶的外包装完全相同.(1)现从这4瓶牛奶中随机拿1瓶,求恰好拿到过期牛奶的概率;(2)现从这4瓶牛奶中不放回地随机拿2瓶,求拿到的2瓶牛奶中恰好有过期牛奶的概率.25.(12分)我区某校组织了一次“诗词大会”,张老师为了选拔本班学生参加,对本班全体学生诗词的掌握情况进行了调查,并将调查结果分为了三类:A:好,B:中,C:差.请根据图中信息,解答下列问题:(1)全班学生共有人;(2)扇形统计图中,B类占的百分比为%,C类占的百分比为%;(3)将上面的条形统计图补充完整;(4)小明被选中参加了比赛.比赛中有一道必答题是:从下表所示的九宫格中选取七个字组成一句诗,其答案为“便引诗情到碧霄”.小明回答该问题时,对第四个字是选“情”还是选“青”,第七个字是选“霄”还是选“宵”,都难以抉择,若分别随机选择,请用列表或画树状图的方法求小明回答正确的概率.情到碧霄诗青引宵便26.今年我县为了创建省级文明县城,全面推行中小学校“社会主义核心价值观”进课堂.某校对全校学生进行了检测评价,检测结果分为(优秀)、(良好)、(合格)、(不合格)四个等级.并随机抽取若干名学生的检测结果作为样本进行数据处理,制作了如下所示不完整的统计表和统计图.请根据统计表和统计图提供的信息,解答下列问题:(1)本次随机抽取的样本容量为__________;(2)统计表中_________,_________.(3)若该校共有学生5000人,请你估算该校学生在本次检测中达到“(优秀)”等级的学生人数.

参考答案一、选择题(每题4分,共48分)1、B【解题分析】从物体正面看,看到的是一个横放的矩形,且一条斜线将其分成一个直角梯形和一个直角三角形.故选B.2、C【分析】设∠A、∠C分别为x、2x,然后根据圆的内接四边形的性质列出方程即可求出结论.【题目详解】解:设∠A、∠C分别为x、2x,∵四边形ABCD是圆内接四边形,∴x+2x=180°,解得,x=60°,即∠A=60°,故选:C.【题目点拨】此题考查的是圆的内接四边形的性质,掌握圆的内接四边形的性质是解决此题的关键.3、D【分析】根据二次函数的顶点式方程可以直接写出其顶点坐标.【题目详解】∵抛物线为y=(x+2)2﹣2,∴顶点坐标为(﹣2,﹣2).故选D.【题目点拨】本题考查了二次函数的顶点坐标的求法,掌握二次函数的顶点式y=a(x﹣h)2+k是解题的关键.4、D【分析】首先可求出菱形的边长,设菱形的两对角线分别为8x,6x,由勾股定理求出x的值,从而可得两条对角线的长,根据菱形的面积等于对角线乘积的一半列式计算即可求解.【题目详解】解:∵菱形的边长是20cm,∴菱形的边长=20÷4=5cm,∵菱形的两条对角线长的比是,∴设菱形的两对角线分别为8x,6x,∵菱形的对角线互相平分,∴对角线的一半分别为4x,3x,由勾股定理得:,解得:x=1,∴菱形的两对角线分别为8cm,6cm,∴菱形的面积=cm2,故选:D.【题目点拨】本题考查了菱形的性质、勾股定理,主要理由菱形的对角线互相平分的性质,以及菱形的面积等于对角线乘积的一半.5、C【题目详解】试题分析:可设原正方形的边长为xm,则剩余的空地长为(x﹣1)m,宽为(x﹣2)m.根据长方形的面积公式列方程可得=1.故选C.考点:由实际问题抽象出一元二次方程.6、A【解题分析】在同一时刻物高和影长成正比,即在同一时刻的两个物体,影子,经过物体顶部的太阳光线三者构成的两个直角三角形相似.【题目详解】根据题意解:标杆的高:标杆的影长=旗杆的高:旗杆的影长,即1.5:2.5=旗杆的高:30,∴旗杆的高==18米.故选:A.【题目点拨】考查了相似三角形的应用,本题只要是把实际问题抽象到相似三角形中,利用相似三角形的相似比,列出方程,求解即可得出旗杆的高.7、B【分析】先将抛物线解析式转化为顶点式,然后根据顶点坐标的平移规律即可解答.【题目详解】解:y=﹣(x﹣1)(x+3)=-(x+1)2+4A、向左平移1个单位后的解析式为:y=-(x+2)2+4,当x=0时,y=0,即该抛物线经过原点,故本选项不符合题意;B、向上平移3个单位后的解析式为:y=-(x+1)2+7,当x=0时,y=3,即该抛物线不经过原点,故本选项符合题意;C、向右平移3个单位后的解析式为:y=-(x-2)2+4,当x=0时,y=0,即该抛物线经过原点,故本选项不符合题意.;D、向下平移3个单位后的解析式为:y=-(x+1)2+1,当x=0时,y=0,即该抛物线经过原点,故本选项不符合题意.【题目点拨】本题考查了二次函数图像的平移,函数图像平移规律:上移加,下移减,左移加,右移减.8、B【分析】根据题意可知当穿过孔洞三角尺为等边三角形时,面积最大,故可求解.【题目详解】根据题意可知当穿过孔洞三角尺为等边三角形时,面积最大,∵孔洞的最长边为∴S==故选B.【题目点拨】此题主要考查等边三角形的面积求解,解题的关键是根据题意得到当穿过孔洞三角尺为等边三角形时面积最大.9、A【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,列出方程求解.【题目详解】由题意可得:解得:x=21,经检验,x=21是原方程的解故红球约有21个,故选:A.【题目点拨】此题主要考查了利用频率估计概率,本题利用了用大量试验得到的频率可以估计事件的概率.关键是根据红球的频率得到相应的等量关系.10、B【分析】如果两个多边形的对应角相等,对应边的比相等,则这两个多边形是相似多边形.【题目详解】解:∵等边三角形的对应角相等,对应边的比相等,∴两个等边三角形一定是相似形,又∵直角三角形,菱形的对应角不一定相等,矩形的边不一定对应成比例,∴两个直角三角形、两个菱形、两个矩形都不一定是相似形,故选:B.【题目点拨】本题考查了相似多边形的识别.判定两个图形相似的依据是:对应边成比例,对应角相等,两个条件必须同时具备.11、C【解题分析】根据相似三角形的周长的比等于相似比列出方程,解方程即可.【题目详解】设小三角形的周长为xcm,则大三角形的周长为(x+40)cm,

由题意得,,

解得,x=75,

则x+40=115,故选C.12、C【分析】根据图像可知为反比例函数,图像过点(3000,20),代入(k),即可求出反比例函数的解析式,再求出牵引力为1200牛时,汽车的速度即可.【题目详解】设函数为(k),代入(3000,20),得,得k=60000,∴,∴牵引力为1200牛时,汽车的速度为=50千米/时,故选C.【题目点拨】此题主要考查反比例函数的应用,解题的关键是找到已知条件求出反比例函数的解析式.二、填空题(每题4分,共24分)13、x1=,x2=0【分析】利用因式分解法解方程即可.【题目详解】2x2-x=0,x(2x-1)=0,x=0或2x-1=0,∴x1=,x2=0.故答案为x1=,x2=0.【题目点拨】本题考查了一元二次方程的解法-因式分解法,熟练运用因式分解法将方程化为x(2x-1)=0是解决问题的关键.14、60π【解题分析】试题分析:先根据勾股定理求得圆锥的母线长,再根据圆锥的侧面积公式求解即可.由题意得圆锥的母线长∴圆锥的侧面积.考点:勾股定理,圆锥的侧面积点评:解题的关键是熟练掌握圆锥的侧面积公式:圆锥的侧面积底面半径×母线.15、100°【分析】连结OC,OD,则∠PCO=90°,∠PDO=90°,可得∠CPD+∠COD=180°,根据OB=OC,OD=OA,可得∠BOC=180°−2∠B,∠AOD=180°−2∠A,则可得出与β的关系式.进而可求出β的度数.【题目详解】连结OC,OD,∵PC、PD均与圆相切,∴∠PCO=90°,∠PDO=90°,∵∠PCO+∠COD+∠ODP+∠CPD=360°,∴∠CPD+∠COD=180°,∵OB=OC,OD=OA,∴∠BOC=180°﹣2∠B,∠AOD=180°﹣2∠A,∴∠COD+∠BOC+∠AOD=180°,∴180°﹣∠CPD+180°﹣2∠B+180°﹣2∠A=180°.∴∠CPD=100°,故答案为:100°.【题目点拨】本题利用了切线的性质,圆周角定理,四边形的内角和为360度求解,解题的关键是熟练掌握切线的性质.16、【分析】设AD=2x,BD=x,所以AB=3x,易证△ADE∽△ABC,利用相似三角形的性质可求出DE的长度,以及,再证明△ADE∽△ACD,利用相似三角形的性质即可求出得出,从而可求出CD的长度.【题目详解】设AD=2x,BD=x,∴AB=3x,∵DE∥BC,∴△ADE∽△ABC,∴,∴,∴DE=4,,∵∠ACD=∠B,∠ADE=∠B,∴∠ADE=∠ACD,∵∠A=∠A,∴△ADE∽△ACD,∴,设AE=2y,AC=3y,∴,∴AD=y,∴,∴CD=2,故填:2.【题目点拨】本题考查相似三角形,解题的关键是熟练运用相似三角形的性质与判定,本题属于中等题型.17、100π【分析】圆锥侧面展开图的弧长=底面周长,利用弧长公式即可求得圆锥母线长,那么圆锥的侧面积=底面周长×母线长÷1.【题目详解】解:设扇形半径为R.

∵底面周长是10π,扇形的圆心角为90°,

∴10π=×1πR,∴R=10,

∴侧面积=×10π×10=100π,

故选:C.【题目点拨】本题利用了圆的周长公式和扇形面积公式求解.18、3π【分析】由切线及平行的性质可知,利用扇形所对的圆心角度数可得阴影部分面积所占的白分比,再用圆的面积乘以百分比即可.【题目详解】解:AB是⊙O的切线,A.为切点即阴影部分的面积故答案为:.【题目点拨】本题考查了切线的性质及扇形的面积,熟练掌握圆的切线垂直于过切点的半径这一性质是解题的关键.三、解答题(共78分)19、(1)见解析;(2)见解析【解题分析】试题分析:圆内接四边形的对角互补.直径所对的圆周角是直角.试题解析:如图①,即为所求.如图②,即为所求.点睛:圆内接四边形的对角互补.直径所对的圆周角是直角.20、x1=2,x2=1.【分析】先去掉括号,再把移到等号的左边,再根据因式分解法即可求解.【题目详解】解:x(x﹣1)+6=2x,x2﹣1x+6﹣2x=0,x2﹣5x+6=0,(x﹣2)(x﹣1)=0,x﹣2=0或x﹣1=0,x1=2,x2=1.【题目点拨】本题考查了解一元二次方程因式分解法,因式分解法解一元二次方程的一般步骤:①移项,使方程的右边化为零;②将方程的左边分解为两个一次因式的乘积;③令每个因式分别为零,得到两个一元一次方程;④解这两个一元一次方程,它们的解就都是原方程的解.21、当该商品每个单价定为50元时,进货200个;每个单价为60元时,进货100个.【解题分析】试题分析:利用销售利润=售价-进价,根据题中条件可以列出利润与的关系式,求出即可.试题解析:设每个商品的定价是元.由题意,得整理,得解得都符合题意.答:当该商品每个单价定为50元时,进货200个;每个单价为60元时,进货100个.22、(1)48-11x;(1)x为1或3;(3)x为1时,区域③的面积最大,为140平方米【分析】(1)将DF、EC以外的线段用x表示出来,再用96减去所有线段的长再除以1可得DF的长度;(1)将区域③图形的面积用关于x的代数式表示出来,并令其值为180,求出方程的解即可;(3)令区域③的面积为S,得出x关于S的表达式,得到关于S的二次函数,求出二次函数在x取值范围内的最大值即可.【题目详解】(1)48-11x(1)根据题意,得5x(48-11x)=180,解得x1=1,x1=3答:x为1或3时,区域③的面积为180平方米(3)设区域③的面积为S,则S=5x(48-11x)=-60x1+140x=-60(x-1)1+140∵-60<0,∴当x=1时,S有最大值,最大值为140答:x为1时,区域③的面积最大,为140平方米【题目点拨】本题考查了二次函数的实际应用,解题的关键是正确理解题中的等量关系,正确得出区域面积的表达式.23、(1)反比例函数为;一次函数解析式为y=﹣x﹣1;(2)x<﹣2或0<x<1.【分析】(1)由A的坐标易求反比例函数解析式,从而求B点坐标,进而求一次函数的解析式;(2)观察图象,找出一次函数的图象在反比例函数的图象上方时,x的取值即可.【题目详解】解:(1)把A(﹣2,1)代入y=,得m=﹣2,即反比例函数为y=﹣,将B(1,n)代入y=﹣,解得n=﹣2,即B(1,﹣2),把A(﹣2,1),B(1,﹣2)代入y=kx+b,得解得k=﹣1,b=﹣1,所以y=﹣x﹣1;(2)由图象可知:当一次函数的值>反比例函数的值时,x<﹣2或0<x<1.【题目点拨】此题考查的是反比例函数和一次函数的综合题,掌握利用待定系数法求一次函数、反比例函数的解析式和根据图象求自变量的取值范围是解决此题的关键.24、(1);(2)【分析】(1)直接根据概率公式计算可得;(2)设这四瓶牛奶分别记为、、、,其中过期牛奶为,画树状图可得所有等可能结果,从所有等可能结果中找到抽出的2瓶牛奶中恰好抽到过期牛奶的结果数,再根据概率公式计算可得【题目详解】解:(1)任意抽取1瓶,抽到过期的一瓶的概率是,故答案为:;(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论