湖南省长沙市青竹湖湘一外国语学校2024届九年级数学第一学期期末调研模拟试题含解析_第1页
湖南省长沙市青竹湖湘一外国语学校2024届九年级数学第一学期期末调研模拟试题含解析_第2页
湖南省长沙市青竹湖湘一外国语学校2024届九年级数学第一学期期末调研模拟试题含解析_第3页
湖南省长沙市青竹湖湘一外国语学校2024届九年级数学第一学期期末调研模拟试题含解析_第4页
湖南省长沙市青竹湖湘一外国语学校2024届九年级数学第一学期期末调研模拟试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湖南省长沙市青竹湖湘一外国语学校2024届九年级数学第一学期期末调研模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.如图,在△中,∥,如果,,,那么的值为()A. B. C. D.2.将含有30°角的直角三角板OAB如图放置在平面直角坐标系中,OB在x轴上,若OA=2,将三角板绕原点O顺时针旋转75°,则点A的对应点A′的坐标为()A.(,﹣1) B.(1,﹣) C.(,﹣) D.(﹣,)3.如图,在平面直角坐标系中,已知⊙D经过原点O,与x轴、y轴分别交于A、B两点,B点坐标为(0,2),OC与⊙D相交于点C,∠OCA=30°,则图中阴影部分的面积为()A.2π﹣2 B.4π﹣ C.4π﹣2 D.2π﹣4.的绝对值是()A. B.2020 C. D.5.如图,抛物线与轴交于点,与轴的负半轴交于点,点是对称轴上的一个动点.连接,当最大时,点的坐标是()A. B. C. D.6.下列语句中,正确的有()A.在同圆或等圆中,相等的圆心角所对的弧相等 B.平分弦的直径垂直于弦C.长度相等的两条弧相等 D.圆是轴对称图形,任何一条直径都是它的对称轴7.已知坐标平面上有一直线L,其方程式为y+2=0,且L与二次函数y=3x2+a的图形相交于A,B两点:与二次函数y=﹣2x2+b的图形相交于C,D两点,其中a、b为整数.若AB=2,CD=1.则a+b之值为何?()A.1 B.9 C.16 D.218.如图所示,给出下列条件:①;②;③;④,其中单独能够判定的个数为()A. B. C. D.9.一元二次方程的根是()A. B. C. D.10.顺次连接平行四边形四边的中点所得的四边形是()A.矩形 B.菱形 C.正方形 D.平行四边形11.图1是一个地铁站入口的双翼闸机.如图2,它的双翼展开时,双翼边缘的端点A与B之间的距离为10cm,双翼的边缘AC=BD=54cm,且与闸机侧立面夹角∠PCA=∠BDQ=30°.当双翼收起时,可以通过闸机的物体的最大宽度为()A.(54+10)cm B.(54+10)cm C.64cm D.54cm12.在平面直角坐标系中,点(-2,6)关于原点对称的点的坐标是()A.(2,-6) B.(-2,6) C.(-6,2) D.(-6,2)二、填空题(每题4分,共24分)13.如图,△ABC中,AB=6,BC=1.如果动点D以每秒2个单位长度的速度,从点B出发沿边BA向点A运动,此时直线DE∥BC,交AC于点E.记x秒时DE的长度为y,写出y关于x的函数解析式_____(不用写自变量取值范围).14.如图,是的切线,为切点,,,点是上的一个动点,连结并延长,交的延长线于,则的最大值为_________

15.正方形ABCD的边长为4,点P在DC边上,且DP=1,点Q是AC上一动点,则DQ+PQ的最小值为______.16.如图,曲线AB是顶点为B,与y轴交于点A的抛物线y=﹣x2+4x+2的一部分,曲线BC是双曲线的一部分,由点C开始不断重复“A﹣B﹣C”的过程,形成一组波浪线,点P(2018,m)与Q(2025,n)均在该波浪线上,则mn=_____.17.一元二次方程x2﹣2x=0的解是.18.已知一次函数y=ax+b与反比例函数y=的图象相交于A(4,2),B(-2,m)两点,则一次函数的表达式为____________.三、解答题(共78分)19.(8分)为加强学生身体锻炼,某校开展体育“大课间”活动,学校决定在学生中开设A:篮球,B:立定跳远,C:跳绳,D:跑步,E:排球五种活动项目.为了了解学生对五种项目的喜欢情况,随机抽取了部分学生进行调查,并将调查结果绘制成如图所示的两个统计图.请结合图中的信息解答下列问题:(1)在这项调查中,共调查了_______名学生;(2)请将两个统计图补充完整;(3)若该校有1200名在校学生,请估计喜欢排球的学生大约有多少人.20.(8分)(1)解方程:(2)已知关于的方程无解,方程的一个根是.①求和的值;②求方程的另一个根.21.(8分)先化简,再求值,,其中m满足:m2﹣4=1.22.(10分)如图,四边形ABCD中,AC平分∠DAB,∠ADC=∠ACB=90°,E为AB的中点,(1)求证:AC2=AB•AD;(2)求证:CE∥AD;(3)若AD=4,AB=6,求的值.23.(10分)已知,点P是等边三角形△ABC中一点,线段AP绕点A逆时针旋转60°到AQ,连接PQ、QC.(1)求证:△BAP≌△CAQ.(2)若PA=3,PB=4,∠APB=150°,求PC的长度.24.(10分)如图,直径为AB的⊙O交的两条直角边BC,CD于点E,F,且,连接BF.(1)求证CD为⊙O的切线;(2)当CF=1且∠D=30°时,求⊙O的半径.25.(12分)如图,要利用一面足够长的墙为一边,其余三边用总长的围栏建两个面积相同的生态园,为了出入方便,每个生态园在平行于墙的一边各留了一个宽米的门,能够建生态园的场地垂直于墙的一边长不超过米(围栏宽忽略不计).每个生态园的面积为平方米,求每个生态园的边长;每个生态园的面积_(填“能”或“不能”)达到平方米.(直接填答案)26.如图,在平面直角坐标系中,方格纸中的每个小方格都是边长为1个单位的正方形,△ABC的顶点均在格点上,点A、B、C的坐标分别为(1,﹣4)、(5,﹣4)、(4,﹣1).(1)以原点O为对称中心,画出△ABC关于原点O对称的△A1B1C1,并写出A1的坐标;(2)将△A1B1C1绕顶点A1逆时针旋转90°后得到对应的△A1B2C2,画出△A1B2C2,并求出线段A1C1扫过的面积.

参考答案一、选择题(每题4分,共48分)1、B【分析】由平行线分线段成比例可得到,从而AC的长度可求.【题目详解】∵∥∴∴∴故选B【题目点拨】本题主要考查平行线分线段成比例,掌握平行线分线段成比例是解题的关键.2、C【解题分析】试题解析:∵三角板绕原点O顺时针旋转75°,

∴旋转后OA与y轴夹角为45°,

∵OA=2,

∴OA′=2,

∴点A′的横坐标为2×=,

纵坐标为-2×=-,

所以,点A′的坐标为(,-)故选C.3、A【分析】从图中明确S阴=S半-S△,然后依公式计算即可.【题目详解】∵∠AOB=90°,∴AB是直径,连接AB,根据同弧对的圆周角相等得∠OBA=∠C=30°,由题意知OB=2,∴OA=OBtan∠ABO=OBtan30°=2,AB=AO÷sin30°=4即圆的半径为2,∴阴影部分的面积等于半圆的面积减去△ABO的面积,故选A.【题目点拨】辅助线问题是初中数学的难点,能否根据题意准确作出适当的辅助线很能反映一个学生的对图形的理解能力,因而是中考的热点,尤其在压轴题中比较常见,需特别注意.4、B【分析】根据绝对值的定义直接解答.【题目详解】解:根据绝对值的概念可知:|−2121|=2121,故选:B.【题目点拨】本题考查了绝对值.解题的关键是掌握绝对值的概念,注意掌握一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;1的绝对值是1.5、D【分析】先根据题意求出点A、点B的坐标,A(0,-3),B(-1,0),抛物线的对称轴为x=1,根据三角形三边的关系得≤AB,当ABM三点共线时取等号,即M点是x=-1与直线AB的交点时,最大.求出点M的坐标即可.【题目详解】解:根据三角形三边的关系得:≤AB,当ABM三点共线时取等号,当三点共线时,最大,则直线与对称轴的交点即为点.由可知,,对称轴设直线为.故直线解析式为当时,.故选:.【题目点拨】本题考查了三角形三边关系的应用,及二次函数的性质应用.找到三点共线时最大是关键,6、A【解题分析】试题分析:平分弦(不是直径)的直径垂直于弦,故B错误;长度和度数都相等的两条弧相等,故C错误;圆是轴对称图形,任何一条直径所在的直线都是它的对称轴,故D错误;则本题选A.7、A【解题分析】分析:判断出A、C两点坐标,利用待定系数法求出a、b即可;详解:如图,由题意知:A(1,﹣2),C(2,﹣2),分别代入y=3x2+a,y=﹣2x2+b可得a=﹣5,b=6,∴a+b=1,故选A.点睛:本题考查二次函数图形上点的坐标特征,待定系数法等知识,解题的关键是理解题意,判断出A、C两点坐标是解决问题的关键.8、B【解题分析】由已知△ABC与△ABD中∠A为公共角,所以只要再找一组角相等,或一组对应边成比例即可解答.【题目详解】解::①∵,∠A为公共角,∴;②∵,∠A为公共角,∴;③虽然,但∠A不是已知的比例线段的夹角,所以两个三角形不相似;④∵,∴,又∵∠A为公共角,∴.综上,单独能够判定的个数有3个,故选B.【题目点拨】本题考查了相似三角形的判定,属于基础题目,熟练掌握相似三角形的判定方法是解题的关键.9、D【解题分析】x2−3x=0,x(x−3)=0,∴x1=0,x2=3.故选:D.10、D【解题分析】试题分析:顺次连接四边形四边的中点所得的四边形是平行四边形,如果原四边形的对角线互相垂直,那么所得的四边形是矩形,如果原四边形的对角线相等,那么所得的四边形是菱形,如果原四边形的对角线相等且互相垂直,那么所得的四边形是正方形,因为平行四边形的对角线不一定相等或互相垂直,因此得平行四边形.故选D.考点:中点四边形的形状判断.11、C【分析】过A作AE⊥CP于E,过B作BF⊥DQ于F,则可得AE和BF的长,依据端点A与B之间的距离为10cm,即可得到可以通过闸机的物体的最大宽度.【题目详解】如图所示,过A作AE⊥CP于E,过B作BF⊥DQ于F,则Rt△ACE中,AE=AC=×54=27(cm),同理可得,BF=27cm,又∵点A与B之间的距离为10cm,∴通过闸机的物体的最大宽度为27+10+27=64(cm),故选C.【题目点拨】本题主要考查了特殊角的三角函数值,特殊角的三角函数值应用广泛,一是它可以当作数进行运算,二是具有三角函数的特点,在解直角三角形中应用较多.12、A【分析】根据关于原点对称的点的横坐标互为相反数,纵坐标互为相反数,可得答案.【题目详解】解:点A(-2,6)关于原点对称的点的坐标是(2,-6),

故选:A.【题目点拨】本题考查了关于原点对称的点的坐标,利用关于原点对称的点的横坐标互为相反数,纵坐标互为相反数是解题关键.二、填空题(每题4分,共24分)13、y=﹣3x+1【分析】由DE∥BC可得出△ADE∽△ABC,再利用相似三角形的性质,可得出y关于x的函数解析式.【题目详解】∵DE∥BC,∴△ADE∽△ABC,∴,即,∴y=﹣3x+1.故答案为:y=﹣3x+1.【题目点拨】本题考查根据实际问题列函数关系式,利用相似三角形的性质得出是关键.14、【分析】根据题意可知当ED与相切时,EC最大,再利用△ECD∽△EBA,找到对应边的关系即可求解.【题目详解】解:如图,当CD⊥DE于点D时EC最大.∵CD⊥DE,是的切线∴∠EDC=∠EAB=90°又∵∠E=∠E∴△ECD∽△EBA∴∴则∵,,∠EAB=90°∴CD=AC=1在Rt△ABE中利用勾股定理得即则∴可化为,解得或(舍去)综上所述,的最大值为.【题目点拨】本题考查了切线和相似的性质,能通过切线的性质找到符合要求的点,再能想到相似得到对应边的关系是解答此题的关键.15、1【分析】要求DQ+PQ的最小值,DQ,PQ不能直接求,可考虑通过作辅助线转化DQ,PQ的值,从而找出其最小值求解.【题目详解】解:如图,连接BP,∵点B和点D关于直线AC对称,∴QB=QD,则BP就是DQ+PQ的最小值,∵正方形ABCD的边长是4,DP=1,∴CP=3,∴BP=∴DQ+PQ的最小值是1.【题目点拨】本题考查轴对称-最短路线问题;正方形的性质.16、1【解题分析】点B是抛物线y=﹣x2+4x+2的顶点,∴点B的坐标为(2,6),2018÷6=336…2,故点P离x轴的距离与点B离x轴的距离相同,∴点P的坐标为(2018,6),∴m=6;点B(2,6)在的图象上,∴k=6;即,2025÷6=337…3,故点Q离x轴的距离与当x=3时,函数的函数值相等,又x=3时,,∴点Q的坐标为(2025,4),即n=4,∴=故答案为1.【题目点拨】本题主要考查了反比例函数图象上的点的坐标特征以及二次函数的图象与性质.本题是一道找规律问题.找到点P、Q在A﹣B﹣C段上的对应点是解题的关键.17、【分析】方程整理后,利用因式分解法求出解即可.【题目详解】方程整理得:x(x﹣1)=0,可得x=0或x﹣1=0,解得:x1=0,x1=1.故答案为x1=0,x1=1.18、y=x-1【题目详解】解:把(4,1)代入,得k=8,∴反比例函数的表达式为,把(-1,m)代入,得m=-4,∴B点的坐标为(-1,-4),把(4,1),(-1,-4)分别代入y=ax+b,得解得,∴直线的表达式为y=x-1.故答案为:y=x-1.三、解答题(共78分)19、(1)200;(2)答案见解析;(3)240人.【分析】(1)由图1可得喜欢“B项运动”的有10人;由图2可得喜欢“B项运动”的占总数的5%;由10÷5%即可求得总人数为200人;(2)①由图1可知喜欢B、C、D、E四项运动的人数分别为10、40、30、40人,由此可得喜欢A项运动的人数为:200-10-40-30-40=80,由此在图1中补出表示A的条形即可;②由80÷200×100%可得喜欢A项运动的人所占的百分比;由30÷200×100%可得喜欢D项运动的人所占的百分比;把所得百分比填入图2中相应的位置即可;(3)由1200×20%可得全校喜欢“排球”运动的人数.【题目详解】解:(1)由图1可得喜欢“B项运动”的有10人,由图2可得喜欢“B项运动”的占总数的5%,∴这次抽查的总人数为:10÷5%=200(人);(2)①由图1可知喜欢B、C、D、E四项运动的人数分别为10、40、30、40人,∴喜欢A项运动的人数为:200-10-40-30-40=80,②喜欢A项运动的人所占的百分比为:80÷200×100%=40%;喜欢D项运动的人所占的百分比为:30÷200×100%=15%;根据上述所得数据补充完两幅图形如下:(3)从抽样调查中可知,喜欢排球的人约占20%,可以估计全校学生中喜欢排球的学生约占20%,人数约为:1200×20%=240(人).答:全校学生中,喜欢排球的人数约为240人.20、(1),;(2)①,,②另一个根是1.【分析】(1)用因式分解法解方程即可;(2)①根据分式方程无解,先求出m的值,然后将m代入一元二次方程中求出k的值即可;②根据根与系数的关系可求出另一个根.【题目详解】(1)原方程可化为或解得:,(2)①解:将分式方程两边同时,得到,解得∵分式方程无解,,把代入方程,得求得②根据一元二次方程根与系数的关系可得∵∴另外一个根是1【题目点拨】本题主要考查解一元二次方程及一元二次方程根与系数的关系,分式方程无解问题,掌握分式方程无解问题的方法及一元二次方程根与系数的关系是解题的关键.21、,﹣【分析】先根据分式的混合运算顺序和运算法则化简原式,再求出符合条件的m的值,从而代入计算可得.【题目详解】解:原式=÷==,∵m2﹣4=1且m≠2,∴m=﹣2,则原式==﹣.【题目点拨】本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则.22、(1)见解析(2)见解析(1).【解题分析】(1)由AC平分∠DAB,∠ADC=∠ACB=90°,可证得△ADC∽△ACB,然后由相似三角形的对应边成比例,证得AC2=AB•AD.(2)由E为AB的中点,根据在直角三角形中,斜边上的中线等于斜边的一半,即可证得CE=AB=AE,从而可证得∠DAC=∠ECA,得到CE∥AD.(1)易证得△AFD∽△CFE,然后由相似三角形的对应边成比例,求得的值,从而得到的值.【题目详解】解:(1)证明:∵AC平分∠DAB∴∠DAC=∠CAB.∵∠ADC=∠ACB=90°∴△ADC∽△ACB.∴即AC2=AB•AD.(2)证明:∵E为AB的中点∴CE=AB=AE∴∠EAC=∠ECA.∵∠DAC=∠CAB∴∠DAC=∠ECA∴CE∥AD.(1)∵CE∥AD∴△AFD∽△CFE∴.∵CE=AB∴CE=×6=1.∵AD=4∴∴.23、(1)见解析;(2)1【分析】(1)直接利用旋转的性质结合全等三角形的判定与性质得出答案;

(2)直接利用等边三角形的性质结合勾股定理即可得出答案.【题目详解】(1)证明:∵线段AP绕点A逆时针旋转60°到AQ,∴AP=AQ,∠PAQ=60°,∴△APQ是等边三角形,∠PAC+∠CAQ=60°,∵△ABC是等边三角形,∴∠BAP+∠PAC=60°,AB=AC,∴∠BAP=∠CAQ,在△BAP和△CAQ中,,∴△BAP≌△CAQ(SAS);(2)∵由(1)得△APQ是等边三角形,∴AP=PQ=3,∠AQP=60°,∵∠APB=110°,∴∠PQC=110°﹣60°=90°,∵PB=QC,∴QC=4,∴△PQC是直角三角形,∴PC===1.【题目点拨】此题主要考查了旋转的性质以及全等三角形的判定与性质和勾股定理等知识,正确应用等边三角形的性质是解题关键.24、(1)证明见解析;(2).【分析】(1)连接OF,只要证明OF∥BC,即可推出OF⊥CD,由此即可解决问题;(2)连接AF,利用∠D=30°,求出∠CBF=∠DBF=30°,得出BF=2,在利用勾股定理得出AB的长度,从而求出⊙O的半径.【题目详解】(1)连接OF,∵,∴∠CBF=∠FBA,∵OF=OB,∴∠FBO=∠OFB,∵点A、O、B三点共线,∴∠CBF=∠OFB,∴BC∥OF,∴∠OFC+∠C=180°,∵∠C=90°,∴∠OFC=90°,即OF⊥DC,∴CD为⊙O的切线;(2)连接AF,∵AB为直径,∴∠AFB=90°,∵∠D=30°,∴∠CBD=60°,∵,∴∠CBF=∠DBF=∠CBD=30°,在,CF=1,∠CBF=30°,∴BF=2CF=2,在,∠ABF=30°,BF=2,∴AF=AB,∴AB2=(AB)2+BF2,即AB2=4,∴

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论