




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河南省新乡市长垣县2024届九年级数学第一学期期末调研试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.下列计算正确的是()A.2a+5b=10ab B.(﹣ab)2=a2b C.2a6÷a3=2a3 D.a2•a4=a82.在同一平面直角坐标系中,反比例函数y(b≠0)与二次函数y=ax2+bx(a≠0)的图象大致是()A. B.C. D.3.方程x(x﹣1)=0的根是()A.0 B.1 C.0或1 D.无解4.如图,在△ABC中,∠A=90°,sinB=,点D在边AB上,若AD=AC,则tan∠BCD的值为()A. B. C. D.5.已知是一元二次方程的解,则的值为()A.-5 B.5 C.4 D.-46.一个不透明的布袋里装有8个只有颜色不同的球,其中2个红球,6个白球.从布袋里任意摸出1个球,则摸出的球是白球的概率为()A. B. C. D.7.已知函数:(1)xy=9;(2)y=;(3)y=-;(4)y=;(5)y=,其中反比例函数的个数为(
)A.1 B.2 C.3 D.48.为了得到函数的图象,可以将函数的图象()A.先关于轴对称,再向右平移1个单位长度,最后再向上平移3个单位长度B.先关于轴对称,再向右平移1个单位长度,最后再向下平移3个单位长度C.先关于轴对称,再向右平移1个单位长度,最后再向上平移3个单位长度D.先关于轴对称,再向右平移1个单位长度,最后再向下平移3个单位长度9.已知一个圆锥的母线长为30cm,侧面积为300πcm,则这个圆锥的底面半径为()A.5cm B.10cm C.15cm D.20cm10.已知如图,在正方形ABCD中,AD=4,E,F分别是CD,BC上的一点,且∠EAF=45°,EC=1,将△ADE绕点A沿顺时针方向旋转90°后与△ABG重合,连接EF,过点B作BM∥AG,交AF于点M,则以下结论:①DE+BF=EF,②BF=,③AF=,④S△MEF=中正确的是A.①②③ B.②③④ C.①③④ D.①②④二、填空题(每小题3分,共24分)11.若一个圆锥的侧面展开图是一个半径为3cm,圆心角为120°的扇形,则该圆锥的底面半径为__________cm.12.从﹣3,﹣2,﹣1,0,1,2这6个数中任意取出一个数记作k,则既能使函数y=的图象经过第一、第三象限,又能使关于x的一元二次方程x2﹣kx+1=0有实数根的概率为_____.13.已知△ABC与△DEF是两个位似图形,它们的位似比为,若,那么________14.如图,D是反比例函数(k<0)的图象上一点,过D作DE⊥x轴于E,DC⊥y轴于C,一次函数y=﹣x+m与的图象都经过点C,与x轴分别交于A、B两点,四边形DCAE的面积为4,则k的值为_______.15.在一个不透明的口袋中装有5个红球和3个白球,他们除颜色外其他完全相同,任意摸出一个球是白球的概率为________.16.若方程有两个相等的实数根,则m=________.17.将一元二次方程用配方法化成的形式为________________.18.如图,在矩形中,,以点为圆心,以的长为半径画弧交于,点恰好是中点,则图中阴影部分的面积为___________.(结果保留)三、解答题(共66分)19.(10分)已知关于x的一元二次方程x2-2x+m-1=1.(1)若此方程有两个不相等的实数根,求实数m的取值范围;(2)当Rt△ABC的斜边长c=,且两直角边a和b恰好是这个方程的两个根时,求Rt△ABC的面积.20.(6分)己知:如图,抛物线与坐标轴分别交于点,点是线段上方抛物线上的一个动点,(1)求抛物线解析式:(2)当点运动到什么位置时,的面积最大?21.(6分)如图,在平行四边形ABCD中,E为BC边上一点,连接DE,点F为线段DE上一点,且∠AFE=∠B.(1)求证△ADF∽△DEC;(2)若BE=2,AD=6,且DF=DE,求DF的长度.22.(8分)如图,在矩形ABCD中,AB=6cm,BC=8cm.点P从点B出发沿边BC向点C以2cm/s的速度移动,点Q从C点出发沿CD边向点B以1cm/s的速度移动.如果P、Q同时出发,几秒钟后,可使△PCQ的面积为五边形ABPQD面积的?23.(8分)某小学学生较多,为了便于学生尽快就餐,师生约定:早餐一人一份,一份两样,一样一个,食堂师傅在窗口随机发放(发放的食品价格一样),食堂在某天早餐提供了猪肉包、面包、鸡蛋、油饼四样食品.(1)按约定,“小李同学在该天早餐得到两个油饼”是事件;(可能,必然,不可能)(2)请用列表或树状图的方法,求出小张同学该天早餐刚好得到猪肉包和油饼的概率.24.(8分)如图,双曲线经过点P(2,1),且与直线y=kx﹣4(k<0)有两个不同的交点.(1)求m的值.(2)求k的取值范围.25.(10分)文具店有三种品牌的6个笔记本,价格是4,5,7(单位:元)三种,从中随机拿出一个本,已知(一次拿到7元本).(1)求这6个本价格的众数.(2)若琪琪已拿走一个7元本,嘉嘉准备从剩余5个本中随机拿一个本.①所剩的5个本价格的中位数与原来6个本价格的中位数是否相同?并简要说明理由;②嘉嘉先随机拿出一个本后不放回,之后又随机从剩余的本中拿一个本,用列表法求嘉嘉两次都拿到7元本的概率.26.(10分)科研人员在测试火箭性能时,发现火箭升空高度与飞行时间之间满足二次函数.(1)求该火箭升空后飞行的最大高度;(2)点火后多长时间时,火箭高度为.
参考答案一、选择题(每小题3分,共30分)1、C【分析】分别对选项的式子进行运算得到:2a+5b不能合并同类项,(﹣ab)2=a2b2,a2•a4=a6即可求解.【题目详解】解:2a+5b不能合并同类项,故A不正确;(﹣ab)2=a2b2,故B不正确;2a6÷a3=2a3,正确a2•a4=a6,故D不正确;故选:C.【题目点拨】本题考查了幂的运算,解题的关键是掌握幂的运算法则.2、D【分析】直接利用二次函数图象经过的象限得出a,b的值取值范围,进而利用反比例函数的性质得出答案.【题目详解】A、抛物线y=ax2+bx开口方向向上,则a>1,对称轴位于轴的右侧,则a,b异号,即b<1.所以反比例函数y的图象位于第二、四象限,故本选项错误;B、抛物线y=ax2+bx开口方向向上,则a>1,对称轴位于轴的左侧,则a,b同号,即b>1.所以反比例函数y的图象位于第一、三象限,故本选项错误;C、抛物线y=ax2+bx开口方向向下,则a<1,对称轴位于轴的右侧,则a,b异号,即b>1.所以反比例函数y的图象位于第一、三象限,故本选项错误;D、抛物线y=ax2+bx开口方向向下,则a<1,对称轴位于轴的右侧,则a,b异号,即b>1.所以反比例函数y的图象位于第一、三象限,故本选项正确;故选D.【题目点拨】本题考查了反比例函数的图象以及二次函数的图象,要熟练掌握二次函数,反比例函数中系数与图象位置之间关系.3、C【分析】解一元二次方程时,需要把二次方程化为两个一元一次方程,此题可化为:或,解此两个一次方程即可.【题目详解】,或,,.
故选.【题目点拨】此题虽不难,但是告诉了学生求解的一个方法,高次的要化为低次的,多元得要化为一元的.4、C【分析】作DE⊥BC于E,在△CDE中根据已知条件可求得DE,CE的长,从而求得tan∠BCD.【题目详解】解:作DE⊥BC于E.∵∠A=90°,sinB=,设AC=3a=AD,则AB=4a,BC=5a,∴BD=AB-AD=a.∴DE=BD·sinB=a,∴根据勾股定理,得BE=a,∴CE=BC-BE=a,∴tan∠BCD=故选C.【题目点拨】本题考查了勾股定理在直角三角形中的运用,考查了直角三角形中三角函数值的计算,本题中正确求三角函数值是解题的关键.5、B【解题分析】根据方程的解的定义,把代入原方程即可.【题目详解】把代入得:4-2b+6=0b=5故选:B【题目点拨】本题考查的是方程的解的定义,理解方程解的定义是关键.6、A【解题分析】用白球的个数除以球的总个数即为所求的概率.【题目详解】解:因为一共有8个球,白球有6个,所以从布袋里任意摸出1个球,摸到白球的概率为,故选:A.【题目点拨】本题考查了概率公式,用到的知识点为:概率等于所求情况数与总情况数之比.7、C【分析】直接根据反比例函数的定义判定即可.【题目详解】解:反比例函数有:xy=9;y=;y=-.故答案为C.【题目点拨】本题考查了反比例函数的定义,即形如y=(k≠0)的函数关系叫反比例函数关系.8、A【分析】先求出两个二次函数的顶点坐标,然后根据顶点坐标即可判断对称或平移的方式.【题目详解】的顶点坐标为的顶点坐标为∴点先关于轴对称,再向右平移1个单位长度,最后再向上平移3个单位长度可得到点故选A【题目点拨】本题主要考查二次函数图象的平移,掌握二次函数图象的平移规律是解题的关键.9、B【解题分析】设这个圆锥的底面半径为r,根据圆锥的侧面积公式可得π×r×30=300π,解得r=10cm,故选B.10、D【分析】利用全等三角形的性质条件勾股定理求出的长,再利用相似三角形的性质求出△BMF的面积即可【题目详解】解:∵AG=AE,∠FAE=∠FAG=45°,AF=AF,∴△AFE△AFG,∴EF=FG∵DE=BG∴EF=FG=BG+FB=DE+BF故①正确∵BC=CD=AD=4,EC=1∴DE=3,设BF=x,则EF=x+3,CF=4-x,在Rt△ECF中,(x+3)2=(4-x)2+12解得x=∴BF=,AF=故②正确,③错误,∵BM∥AG∴△FBM~△FGA∴∴S△MEF=,故④正确,故选D.【题目点拨】本题考查旋转变换、正方形的性质、全等三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,构造全等三角形解决问题,属于中考选择题中的压轴题二、填空题(每小题3分,共24分)11、1【分析】(1)根据,求出扇形弧长,即圆锥底面周长;(2)根据,即,求圆锥底面半径.【题目详解】该圆锥的底面半径=故答案为:1.【题目点拨】圆锥的侧面展开图是扇形,解题关键是理解扇形弧长就是圆锥底面周长.12、.【分析】确定使函数的图象经过第一、三象限的k的值,然后确定使方程有实数根的k值,找到同时满足两个条件的k的值即可.【题目详解】解:这6个数中能使函数y=的图象经过第一、第三象限的有1,2这2个数,∵关于x的一元二次方程x2﹣kx+1=0有实数根,∴k2﹣4≥0,解得k≤﹣2或k≥2,能满足这一条件的数是:﹣3、﹣2、2这3个数,∴能同时满足这两个条件的只有2这个数,∴此概率为,故答案为:.13、1【分析】由题意直接利用位似图形的性质,进行分析计算即可得出答案.【题目详解】解:∵△ABC与△DEF是两个位似图形,它们的位似比为,∴△DEF的面积是△ABC的面积的4倍,∵S△ABC=10,∴S△DEF=1.故答案为:1.【题目点拨】本题主要考查位似变换,熟练掌握位似图形的面积比是位似比的平方比是解题的关键.14、-1【题目详解】解:∵的图象经过点C,∴C(0,1),将点C代入一次函数y=-x+m中,得m=1,∴y=-x+1,令y=0得x=1,∴A(1,0),∴S△AOC=×OA×OC=1,∵四边形DCAE的面积为4,∴S矩形OCDE=4-1=1,∴k=-1故答案为:-1.15、【题目详解】解:∵在一个不透明的口袋中装有5个红球和3个白球,∴任意从口袋中摸出一个球来,P(摸到白球)==.16、4【解题分析】∵方程x²−4x+m=0有两个相等的实数根,∴△=b²−4ac=16−4m=0,解之得,m=4故本题答案为:417、【分析】把方程常数项移到右边,两边加上1,变形得到结果,即可得到答案.【题目详解】解:由方程,变形得:,配方得:,即;故答案为.【题目点拨】此题考查了解一元二次方程——配方法,熟练掌握完全平方公式是解本题的关键.18、【分析】连接EC,先根据题意得出,再得出,然后计算出和的面积即可求解.【题目详解】连接EC,如下图所示:由题意可得:∵是中点∴∴∴∴∴∴故填:.【题目点拨】本题主要考查扇形面积的计算、矩形的性质、解直角三角形,准确作出辅助线是关键.三、解答题(共66分)19、(1)m<2;(2)【分析】(1)根据方程有两个不相等的实数根即可得到判别式大于1,由此得到答案;(2)根据根与系数的关系式及完全平方公式变形求出ab,再利用三角形的面积公式即可得到答案.【题目详解】(1)关于x的一元二次方程x2-2x+m-1=1有两个不相等的实数根,∴△>1,即△=4-4(m-1)>1,解得m<2;(2)∵Rt△ABC的斜边长c=,且两直角边a和b恰好是这个方程的两个根,∴a+b=2,a2+b2=()2=3,∴(a+b)2-2ab=3,∴4-2ab=3,∴ab=,∴Rt△ABC的面积=ab=.【题目点拨】此题考查一元二次方程的根的判别式,根与系数的关系式,直角三角形的勾股定理,完全平方式的变形,直角三角形面积的求法.20、(1);(2)点运动到坐标为,面积最大.【分析】(1)用待定系数法即可求抛物线解析式.
(2)设点P横坐标为t,过点P作PF∥y轴交AB于点F,求直线AB解析式,即能用t表示点F坐标,进而表示PF的长.把△PAB分成△PAF与△PBF求面积和,即得到△PAB面积与t的函数关系,配方即得到t为何值时,△PAB面积最大,进而求得此时点P坐标.【题目详解】解:(1)抛物线过点,,解这个方程组,得,抛物线解析式为.(2)如图1,过点作轴于点,交于点.时,,.直线解析式为.点在线段上方抛物线上,设...=点运动到坐标为,面积最大.【题目点拨】本题考查了二次函数的图象与性质,利用二次函数求三角形面积的最大值,关键在于把原三角形分割成有一边平行于y轴的两个三角形面积之和.21、(1)见解析;(2)DF=4【分析】(1)根据平行四边形的性质得到∠ADF=∠DEC,∠C+∠B=180°,根据∠AFE=∠B得到∠AFD=∠C,根据相似三角形的判定定理即可证明;(2)根据相似三角形的性质列出比例式,代入计算即可.【题目详解】解:(1)证明:∵四边形ABCD是平行四边形,∴∠C+∠B=180°,∠ADF=∠DEC,∵∠AFD+∠AFE=180°,∠AFE=∠B,∴∠AFD=∠C,∴△ADF∽△DEC;(2)∵△ADF∽△DEC∴∵四边形ABCD是平行四边形,AD=6,BE=2∴EC=BC-BE=AD-BE=4,又∵DF=DE∴DE=DF∴解得DF=4.【题目点拨】本题考查的是相似三角形的判定和性质、平行四边形的性质,掌握相似三角形的判定定理和性质定理是解决本题的关键.22、2秒【分析】用时间t分别表示PC、CQ,求出△PCQ的面积,再由△PCQ的面积为五边形ABPQD面积的得到△PCQ的面积是矩形的即可解题【题目详解】设时间为t秒,则PC=8-2t,AC=t∴∵△PCQ的面积为五边形ABPQD面积的∴∴解得t=2【题目点拨】本题考查一元二次方程的应用,本题的关键是把三角形与五边形的面积转换成与矩形的面积。23、(1)不可能事件;(2).【题目详解】试题分析:(1)根据随机事件的概念即可得“小李同学在该天早餐得到两个油饼”是不可能事件;(2)根据题意画出树状图,再由概率公式求解即可.试题解析:(1)小李同学在该天早餐得到两个油饼”是不可能事件;(2)树状图法即小张同学得到猪肉包和油饼的概率为.考点:列表法与树状图法.24、(1)m=2;(2)k的取值范围是﹣2<k<0.【解题分析】(1)将点P坐标代入,利用待定系数法求解即可;(2)由题意可
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 中医馆与健康管理体系的融合发展模式
- 高管绿色经历对企业ESG表现的影响
- 2025年虚拟现实教育与学习方式的综合能力考核试卷及答案
- 物资需求计划管理制度
- 环保隐患整改管理制度
- 环卫作业奖惩管理制度
- 环卫公司运行管理制度
- 环卫大队人员管理制度
- 2025年中国电信集团有限公司北京分公司人员招聘笔试备考试题附答案详解
- 现场收款收据管理制度
- 【MOOC】国际商务-暨南大学 中国大学慕课MOOC答案
- 英语词根大全(共910个)
- 2024年北京大学强基计划物理试题(附答案)
- 矿山安全监测预警
- 计算机网络与信息安全(2024年版)课件全套 李全龙 第01-10章 计算机网络与信息安全概述- 网络安全协议与技术措施
- 广西桂林市(2024年-2025年小学五年级语文)部编版期末考试(上学期)试卷及答案
- 第八届全国医药行业特有职业技能竞赛(中药调剂员)考试题及答案
- 护士进修手册
- 广东版-开心学英语六年级下册教案
- 传感器技术-武汉大学
- 戏剧鉴赏学习通超星期末考试答案章节答案2024年
评论
0/150
提交评论