2024届河北省泊头市九年级数学第一学期期末统考试题含解析_第1页
2024届河北省泊头市九年级数学第一学期期末统考试题含解析_第2页
2024届河北省泊头市九年级数学第一学期期末统考试题含解析_第3页
2024届河北省泊头市九年级数学第一学期期末统考试题含解析_第4页
2024届河北省泊头市九年级数学第一学期期末统考试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届河北省泊头市九年级数学第一学期期末统考试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.如图,正六边形内接于,连接.则的度数是()A. B. C. D.2.如图,⊙O中,弦BC与半径OA相交于点D,连接AB,OC,若∠A=60°,∠ADC=85°,则∠C的度数是()A.25° B.27.5° C.30° D.35°3.二次函数的图象如图所示,反比例函数与一次函数在同一平面直角坐标系中的大致图象是A. B. C. D.4.如图,是的直径,点是上两点,且,连接,过点作,交的延长线于点,垂足为,若,则的半径为()A. B. C. D.5.对于反比例函数,下列说法错误的是()A.它的图象分别位于第二、四象限B.它的图象关于成轴对称C.若点,在该函数图像上,则D.的值随值的增大而减小6.如图,小江同学把三角尺含有角的一端以不同的方向穿入进另一把三角尺(含有角)的孔洞中,已知孔洞的最长边为,则三角尺穿过孔洞部分的最大面积为()A. B. C. D.7.下列几何图形中,既是轴对称图形,又是中心对称图形的是()A.等腰三角形 B.正三角形 C.平行四边形 D.正方形8.一次函数y=﹣3x﹣2的图象和性质,表述正确的是()A.y随x的增大而增大 B.在y轴上的截距为2C.与x轴交于点(﹣2,0) D.函数图象不经过第一象限9.函数y=ax2﹣1与y=ax(a≠0)在同一直角坐标系中的图象可能是()A. B. C. D.10.反比例函数y=的图象,在每个象限内,y的值随x值的增大而增大,则k可以为()A.0 B.1 C.2 D.311.已知2a=3b(b≠0),则下列比例式成立的是()A.= B. C. D.12.二次函数的图象如图所示,则一次函数与反比例函数在同一平面直角坐标系中的大致图象为()A. B. C. D.二、填空题(每题4分,共24分)13.如图,是一个半径为6cm,面积为12πcm2的扇形纸片,现需要一个半径为R的圆形纸片,使两张纸片刚好能组合成圆锥体,则R等于_____cm.14.一个圆锥的侧面积是底面积的2倍,则圆锥侧面展开图扇形的圆心角是___.15.已知△ABC在坐标平面内三顶点的坐标分别为A(0,2)、B(3,3)、C(2,1).以B为位似中心,画出△A1B1C1与△ABC相似,两三角形位于点B同侧且相似比是3,则点C的对应顶点C1的坐标是_____.16.抛物线y=(x-2)2+3的顶点坐标是______.17.如图AC,BD是⊙O的两条直径,首位顺次连接A,B,C,D得到四边形ABCD,若AD=3,∠BAC=30°,则图中阴影部分的面积是______.18.广场上喷水池中的喷头微露水面,喷出的水线呈一条抛物线,水线上水珠的高度(米)关于水珠与喷头的水平距离(米)的函数解析式是.水珠可以达到的最大高度是________(米).三、解答题(共78分)19.(8分)如图,若是由ABC平移后得到的,且中任意一点经过平移后的对应点为(1)求点小的坐标.(2)求的面积.20.(8分)如图,为测量小岛A到公路BD的距离,先在点B处测得∠ABD=37°,再沿BD方向前进150m到达点C,测得∠ACD=45°,求小岛A到公路BD的距离.(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)21.(8分)如图,在中,,是边上的中线,过点作,垂足为,交于点,.(1)求的值:(2)若,求的长.22.(10分)如图,在△ABC中,∠CAB=90°,D是边BC上一点,,E为线段AD的中点,连结CE并延长交AB于点F.(1)求证:AD⊥BC.(2)若AF:BF=1:3,求证:CD:DB=1:2.23.(10分)(1)计算:|1﹣﹣2cos45°+2sin30°(2)解方程:x2﹣6x﹣16=024.(10分)如图,在8×8的正方形网格中,△AOB的顶点都在格点上.请在网格中画出△OAB的一个位似图形,使两个图形以点O为位似中心,且所画图形与△OAB的位似为2:1.25.(12分)如图,在边长为1的正方形网格中,△ABC的顶点均在格点上,把△ABC绕点C逆时针旋转90°后得到△A1B1C.(1)画出△A1B1C,;(2)求在旋转过程中,CA所扫过的面积.26.如图1,在中,是的直径,交于点,过点的直线交于点,交的延长线于点.(1)求证:是的切线;(2)若,试求的长;(3)如图2,点是弧的中点,连结,交于点,若,求的值.

参考答案一、选择题(每题4分,共48分)1、C【解题分析】根据正六边形的内角和求得∠BCD,然后根据等腰三角形的性质即可得到结论.【题目详解】解:∵在正六边形ABCDEF中,∠BCD==120°,BC=CD,∴∠CBD=30°,

故选:C.【题目点拨】本题考查的是正多边形和圆、等腰三角形的性质,三角形的内角和,熟记多边形的内角和是解题的关键.2、D【解题分析】分析:直接利用三角形外角的性质以及邻补角的关系得出∠B以及∠ODC度数,再利用圆周角定理以及三角形内角和定理得出答案.详解:∵∠A=60°,∠ADC=85°,∴∠B=85°-60°=25°,∠CDO=95°,∴∠AOC=2∠B=50°,∴∠C=180°-95°-50°=35°故选D.点睛:此题主要考查了圆周角定理以及三角形内角和定理等知识,正确得出∠AOC度数是解题关键.3、B【解题分析】试题分析:∵由二次函数的图象知,a<1,>1,∴b>1.∴由b>1知,反比例函数的图象在一、三象限,排除C、D;由知a<1,一次函数的图象与y国轴的交点在x轴下方,排除A.故选B.4、D【分析】根据已知条件可知、都是含角的直角三角形,先利用含角的直角三角形的性质求得,再结合勾股定理即可求得答案.【题目详解】解:连接、,如图:∵∴∴∴在中,∵是的直径∴∴在中,,即∴∴∴∴的半径为.故选:D【题目点拨】本题考查了圆的一些基本性质、含角的直角三角形的性质以及勾股定理,添加适当的辅助线可以更顺利地解决问题.5、D【分析】根据反比例函数的性质对各选项逐一分析即可.【题目详解】解:反比例函数,,图像在二、四象限,故A正确.反比例函数,当时,图像关于对称;当时,图像关于对称,故B正确当,的值随值的增大而增大,,则,故C正确在第二象限或者第四象限,的值随值的增大而增大,故D错误故选D【题目点拨】本题主要考查了反比例函数的性质.6、B【分析】根据题意可知当穿过孔洞三角尺为等边三角形时,面积最大,故可求解.【题目详解】根据题意可知当穿过孔洞三角尺为等边三角形时,面积最大,∵孔洞的最长边为∴S==故选B.【题目点拨】此题主要考查等边三角形的面积求解,解题的关键是根据题意得到当穿过孔洞三角尺为等边三角形时面积最大.7、D【分析】在一个平面内,如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形;在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形与另一个图形重合,这样的图形叫做中心对称图形.【题目详解】根据定义可得A、B为轴对称图形;C为中心对称图形;D既是轴对称图形,也是中心对称图形.故选:D.考点:轴对称图形与中心对称图形8、D【解题分析】根据一次函数的图象和性质,依次分析各个选项,选出正确的选项即可.【题目详解】A.一次函数y=﹣3x﹣2的图象y随着x的增大而减小,即A项错误;B.把x=0代入y=﹣3x﹣2得:y=﹣2,即在y轴的截距为﹣2,即B项错误;C.把y=0代入y=﹣3x﹣2的:﹣3x﹣2=0,解得:x,即与x轴交于点(,0),即C项错误;D.函数图象经过第二三四象限,不经过第一象限,即D项正确.故选D.【题目点拨】本题考查了一次函数图象上点的坐标特征,一次函数的性质,正确掌握一次函数图象的增减性和一次函数的性质是解题的关键.9、B【分析】本题可先通过抛物线与y轴的交点排除C、D,然后根据一次函数y=ax图象得到a的正负,再与二次函数y=ax2的图象相比较看是否一致.【题目详解】解:由函数y=ax2﹣1可知抛物线与y轴交于点(0,﹣1),故C、D错误;A、由抛物线可知,a>0,由直线可知,a<0,故A错误;B、由抛物线可知,a>0,由直线可知,a>0,故B正确;故选:B.【题目点拨】此题考查的是一次函数的图象及性质和二次函数的图象及性质,掌握一次函数的图象及性质与系数关系和二次函数的图象及性质与系数关系是解决此题的关键.10、A【解题分析】试题分析:因为y=的图象,在每个象限内,y的值随x值的增大而增大,所以k-1<0,k<1.故选A.考点:反比例函数的性质.11、B【分析】根据等式的性质,可得答案.【题目详解】解:A、等式的左边除以4,右边除以9,故A错误;B、等式的两边都除以6,故B正确;C、等式的左边除以2b,右边除以,故C错误;D、等式的左边除以4,右边除以b2,故D错误;故选:B.【题目点拨】本题考查了比例的性质,利用了等式的性质2:等式的两边都乘以或除以同一个不为零的数或整式,结果不变.12、B【解题分析】∵二次函数图象开口向上,∴a>1,∵对称轴为直线,∴b<1.∵与y轴的正半轴相交,∴c>1.∴的图象经过第一、三、四象限;反比例函数图象在第一、三象限,只有B选项图象符合.故选B.二、填空题(每题4分,共24分)13、2.【解题分析】能组合成圆锥体,那么扇形的弧长等于圆形纸片的周长.应先利用扇形的面积=圆锥的弧长母线长,得到圆锥的弧长=2扇形的面积母线长,进而根据圆锥的底面半径=圆锥的弧长求解.【题目详解】圆锥的弧长,

圆锥的底面半径,

故答案为2.【题目点拨】解决本题的难点是得到圆锥的弧长与扇形面积之间的关系,注意利用圆锥的弧长等于底面周长这个知识点.14、180°【题目详解】解:设底面圆的半径为r,侧面展开扇形的半径为R,扇形的圆心角为n度.由题意得S底面面积=πr2,l底面周长=2πr,S扇形=2S底面面积=2πr2,l扇形弧长=l底面周长=2πr.由S扇形=l扇形弧长×R得2πr2=×2πr×R,故R=2r.由l扇形弧长=得:2πr=解得n=180°.故答案为:180°【题目点拨】本题考查扇形面积和弧长公式以及圆锥侧面积的计算,掌握相关公式正确计算是解题关键.15、(0,-3)【解题分析】根据把原三角形的三边对应的缩小或放大一定的比例即可得到对应的相似图形在改变的过程中保持形状不变(大小可变)即可得出答案.【题目详解】把原三角形的三边对应的缩小或放大一定的比例即可得到对应的相似图形,所画图形如图所示,C1坐标为(0,-3).【题目点拨】本题考查了相似变换作图的知识,注意图形的相似变换不改变图形中每一个角的大小;图形中的每条线段都扩大(或缩小)相同的倍数.16、(2,3)【分析】已知解析式为顶点式,可直接根据顶点式的坐标特点,求顶点坐标,从而得出对称轴.【题目详解】解:y=(x-2)2+3是抛物线的顶点式,

根据顶点式的坐标特点可知,顶点坐标为(2,3).

故答案为(2,3)【题目点拨】考查将解析式化为顶点式y=a(x-h)2+k,顶点坐标是(h,k),对称轴是x=h.17、【分析】首先证明△BOC是等边三角形及△OBC≌△AOD(SAS),进而得出S△AOD=S△DOC=S△BOC=S△AOB,得到S阴=2•S扇形OAD,再利用扇形的面积公式计算即可;【题目详解】解:∵AC是直径,

∴∠ABC=∠ADC=90°,

∵∠BAC=30°,AD=3,

∴AC=2AD=6,∠ACB=60°,∴OA=OC=3,

∵OC=OB=OA=OD,

∴△OBC与△AOD是等边三角形,

∴∠BOC=∠AOD=60°,∴△OBC≌△AOD(SAS)又∵O是AC,BD的中点,

∴S△AOD=S△DOC=S△BOC=S△AOB,

∴S阴=2•S扇形OAD=,故答案为:.【题目点拨】本题考查扇形的面积公式、解直角三角形、等边三角形的判定和性质等知识,解题的关键是学会用转化的思想思考问题,属于中考常考题型.18、10【解题分析】将一般式转化为顶点式,依据自变量的变化范围求解即可.【题目详解】解:,当x=2时,y有最大值10,故答案为:10.【题目点拨】利用配方法将一般式转化为顶点式,再利用顶点式去求解函数的最大值.三、解答题(共78分)19、(1)(-1,5),(-2,3),(-4,4);(2)三角形面积为2.5;【分析】(1)由△ABC中任意一点P(x,y)经平移后对应点为P1(x-5,y+2)可得△ABC的平移规律为:向左平移5个单位,向上平移2个单位,由此得到点A、B、C的对应点A1、B1、C1的坐标.

(2)利用矩形的面积减去三个顶点上三角形的面积即可.【题目详解】解:(1)∵△ABC中任意一点P(x,y)经平移后对应点为P1(x-5,y+2),

∴△ABC的平移规律为:向左平移5个单位,向上平移2个单位,

∵A(4,3),B(3,1),C(1,2),

∴点A1的坐标为(-1,5),点B1的坐标为(-2,3),点C1的坐标为(-4,4).

(2)如图所示,

△A1B1C1的面积=3×2-×1×3-×1×2-×1×2=.【题目点拨】本题考查的是作图-平移变换,熟知图形平移不变性的性质是解答此题的关键.20、1米.【分析】过A作AE⊥CD垂足为E,设AE=x米,再利用锐角三角函数关系得出BE=x,CE=x,根据BC=BE﹣CE,得到关于x的方程,即可得出答案.【题目详解】解:过A作AE⊥CD垂足为E,设AE=x米,在Rt△ABE中,tan∠B=,∴BE==x,在Rt△ABE中,tan∠ACD=,∴CE==x,∵BC=BE﹣CE,∴x﹣x=150,解得:x=1.答:小岛A到公路BD的距离为1米.【题目点拨】本题考查了三角函数和一元一次方程的问题,掌握特殊三角函数值和解一元一次方程的方法是解题的关键.21、(1);(2)4【分析】(1)根据∠ACB=90°,CD是斜边AB上的中线,可得出CD=BD,则∠B=∠BCD,再由AE⊥CD,可证明∠B=∠CAM,由AM=2CM,可得出CM:AC=1:,即可得出sinB的值;(2)根据sinB的值,可得出AC:AB=1:,再由AB=,得AC=2,根据勾股定理即可得出结论.【题目详解】(1)∵,是斜边的中线,∴,∴,∵,∴.∵,∴.∴.在中,∵,∴.∴.(2)∵,∴.由(1)知,∴.∴.【题目点拨】本题主要考查了勾股定理和锐角三角比,熟练掌握根据锐角三角比解直角三角形是解题的关键.22、(1)见解析;(2)见解析.【分析】(1)由等积式转化为比例式,再由相似三角形的判定定理,证明△ABD∽CBA,从而得出∠ADB=∠CAB=90°;(2)过点D作DG∥AB交CF于点G,由E为AD的中点,可得△DGE≌△AFE,得出AF=DG,再由平行线分线段成比例可得出结果.【题目详解】证明:(1)∵AB2=BD·BC,∴又∠B=∠B,∴△ABD∽CBA,∴∠ADB=∠CAB=90°,∴AD⊥BC.(2)过点D作DG∥AB交CF于点G,∵E为AD的中点,∴易得△DGE≌△AFE,∴AF=DG,又AF:BF=1:3,∴DG:BF=1:3.∵DG∥BF,∴DG:BF=CD:BC=1:3,∴CD:DB=1:2.【题目点拨】本题考查相似三角形的判定与性质,遇到比例式或等积式就要考虑转化为三角形相似来解决问题.23、(1)1;(1)x1=8,x1=﹣1【分析】(1)根据二次根式的乘法、加减法和特殊角的三角函数值可以解答本题;(1)根据因式分解法可以解答此方程.【题目详解】(1)|1﹣|+﹣1cos45°+1sin30°=﹣1+1﹣1×+1×=﹣1+1﹣+1=1;(1)∵x1﹣6x﹣16=0,∴(x﹣8)(x+1)=0,∴x﹣8=0或x+1=0,解得,x1=8,x1=﹣1.【题目点拨】本题考查解一元二次方程、实数的运算、特殊角的三角函数值,解答本题的关键是明确它们各自的解答方法.24、答案见解析.【分析】延长AO,BO,根据相似

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论