版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届吉林省长春市第108中学数学九年级第一学期期末学业水平测试模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.如图所示,AB是⊙O的直径,点C为⊙O外一点,CA,CD是⊙O的切线,A,D为切点,连接BD,AD.若∠ACD=30°,则∠DBA的大小是()A.15° B.30° C.60° D.75°2.一元二次方程的根的情况为()A.有两个相等的实数根 B.有两个不相等的实数根C.只有一个实数根 D.没有实数根3.已知点关于轴的对称点在反比例函数的图像上,则实数的值为()A.-3 B. C. D.34.下列说法中正确的是()A.“任意画出一个等边三角形,它是轴对称图形”是随机事件B.“任意画出一个平行四边形,它是中心对称图形”是必然事件C.“概率为0.0001的事件”是不可能事件D.任意掷一枚质地均匀的硬币10次,正面向上的一定是5次5.若,则()A. B. C.1 D.6.下列函数中,是反比例函数的是()A. B. C. D.7.如图所示是一个运算程序,若输入的值为﹣2,则输出的结果为()A.3 B.5 C.7 D.98.如图,AB是⊙O的直径,BC与⊙O相切于点B,AC交⊙O于点D,若∠ACB=50°,则∠BOD等于()A.40° B.50° C.60° D.80°9.如图是抛物线y1=ax2+bx+c(a≠0)图象的一部分,抛物线的顶点坐标A(1,3),与x轴的一个交点B(4,0),直线y2=mx+n(m≠0)与抛物线交于A,B两点,下列结论:①2a+b=0;②abc>0;③方程ax2+bx+c=3有两个相等的实数根;④抛物线与x轴的另一个交点是(﹣1,0);⑤当1<x<4时,有y2<y1,其中正确的是()A.①②③ B.①③④ C.①③⑤ D.②④⑤10.下面四个图案分别是步行标志、禁止行人通行标志、禁止驶入标志和直行标志,其中既是轴对称图形,又是中心对称图形的是()A. B. C. D.二、填空题(每小题3分,共24分)11.如图,在平面直角坐标系中,抛物线与轴的正半轴相交于点,其顶点为,将这条抛物线绕点旋转后得到的抛物线与轴的负半轴相交于点,其顶点为,连接,,,,则四边形的面积为__________;12.如图,螺母的一个面的外沿可以看作是正六边形,这个正六边形ABCDEF的半径是2cm,则这个正六边形的周长是___.13.小亮在投篮训练中,对多次投篮的数据进行记录.得到如下频数表:投篮次数20406080120160200投中次数1533496397128160投中的频率0.750.830.820.790.810.80.8估计小亮投一次篮,投中的概率是______.14.如图,半径为,正方形内接于,点在上运动,连接,作,垂足为,连接.则长的最小值为________.15.某公司生产一种饮料是由A,B两种原料液按一定比例配成,其中A原料液的原成本价为10元/千克,B原料液的原成本价为5元/千克,按原售价销售可以获得50%的利润率,由于物价上涨,现在A原料液每千克上涨20%,B原料液每千克上涨40%,配制后的饮料成本增加了,公司为了拓展市场,打算再投入现在成本的25%做广告宣传,如果要保证该种饮料的利润率不变,则这种饮料现在的售价应比原来的售价高_____元/千克.16.某物体对地面的压强P(Pa)与物体和地面的接触面积S(m2)成反比例函数关系(如图),当该物体与地面的接触面积为0.25m2时,该物体对地面的压强是______Pa.17.一元二次方程2x2+3x+1=0的两个根之和为__________.18.若代数式是完全平方式,则的值为______.三、解答题(共66分)19.(10分)某商店专门销售某种品牌的玩具,成本为30元/件,每天的销售量y(件)与销售单价x(元)之间存在着如图所示的一次函数关系.(1)求y与x之间的函数关系式;(2)当销售单价为多少元时,每天获取的利润最大,最大利润是多少?(3)为了保证每天的利润不低于3640元,试确定该玩具销售单价的范围.20.(6分)已知:如图,,点在射线上.求作:正方形,使线段为正方形的一条边,且点在内部.(请用直尺、圆规作图,不写作法,但要保留作图痕迹)21.(6分)如图1,已知平行四边形,是的角平分线,交于点.(1)求证:.(2)如图2所示,点是平行四边形的边所在直线上一点,若,且,,求的面积.22.(8分)如图,在菱形ABCD中,对角线AC,BD交于点O,AE⊥BC交CB延长线于E,CF∥AE交AD延长线于点F.(1)求证:四边形AECF是矩形;(2)连接OE,若AE=4,AD=5,求OE的长.23.(8分)在平面直角坐标系中,存在抛物线以及两点和.(1)求该抛物线的顶点坐标;(2)若该抛物线经过点,求此抛物线的表达式;(3)若该抛物线与线段只有一个公共点,结合图象,求的取值范围.24.(8分)如图,是的直径,是上半圆的弦,过点作的切线交的延长线于点,过点作切线的垂线,垂足为,且与交于点,设,的度数分别是.用含的代数式表示,并直接写出的取值范围;连接与交于点,当点是的中点时,求的值.25.(10分)有四张背面相同的纸牌A、B、C、D,其正面上方分别画有四个不同的几何图形,下方写有四个不同算式,小明将四张纸牌背面朝上洗匀后摸出一张,将其余3张洗匀后再摸出一张.(1)用树状图(或列表法)表示两次摸牌所有可能出现的结果(纸牌用A、B、C、D表示);(2)求摸出的两张纸牌的图形是中心对称图形且算式也正确的纸牌的概率.26.(10分)如图,在平面直角坐标系中,△ABC的顶点坐标分别为A(﹣2,﹣4)、B(0,﹣4)、C(1,﹣2).(1)△ABC关于原点O对称的图形是△A1B1C1,不用画图,请直接写出△A1B1C1的顶点坐标:A1,B1,C1;(2)在图中画出△ABC关于原点O逆时针旋转90°后的图形△A2B2C2,请直接写出△A2B2C2的顶点坐标:A2,B2,C2.
参考答案一、选择题(每小题3分,共30分)1、D【题目详解】连接OD,∵CA,CD是⊙O的切线,∴OA⊥AC,OD⊥CD,∴∠OAC=∠ODC=90°,∵∠ACD=30°,∴∠AOD=360°﹣∠C﹣∠OAC﹣∠ODC=150°,∵OB=OD,∴∠DBA=∠ODB=∠AOD=75°.故选D.考点:切线的性质;圆周角定理.2、D【分析】先根据计算判别式的值,然后根据判别式的意义判断方程根的情况.【题目详解】因为△=,所以方程无实数根.故选:D.【题目点拨】本题考查了根的判别式:一元二次方程的根与有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.3、A【分析】先根据关于x轴对称的点的坐标特征确定A'的坐标为,然后把A′的坐标代入中即可得到k的值.【题目详解】解:点关于x轴的对称点A'的坐标为,
把A′代入,得k=-1×1=-1.
故选:A.【题目点拨】本题考查了反比例函数图象上点的坐标特征:反比例函数(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.4、B【解题分析】试题分析:A.“任意画出一个等边三角形,它是轴对称图形”是必然事件,选项错误;B.“任意画出一个平行四边形,它是中心对称图形”是必然事件,选项正确;C.“概率为0.0001的事件”是随机事件,选项错误;D.任意掷一枚质地均匀的硬币10次,正面向上的可能是5次,选项错误.故选B.考点:随机事件.5、D【分析】令=k,则x=2k,y=3k,z=4k,再代入分式进行计算即可.【题目详解】解:令=k,则x=2k,y=3k,z=4k,
∴.故选:D.【题目点拨】本题考查的是分式的化简求值,在解答此类题目时要注意,当条件是连等式,因此可用设参数法,即设出参数k,得出x,y,z与k的关系,然后再代入待求的分式化简即可.6、C【解题分析】反比例函数的形式有:①(k≠0);②y=kx﹣1(k≠0)两种形式,据此解答即可.【题目详解】A.它是正比例函数;故本选项错误;B.不是反比例函数;故本选项错误;C.符合反比例函数的定义;故本选项正确;D.它是正比例函数;故本选项错误.故选:C.【题目点拨】本题考查了反比例函数的定义,重点是将一般式(k≠0)转化为y=kx﹣1(k≠0)的形式.7、B【分析】根据图表列出算式,然后把x=-2代入算式进行计算即可得解.【题目详解】解:把x=﹣2代入得:1﹣2×(﹣2)=1+4=1.故选:B.【题目点拨】此题考查代数式求值,解题关键在于掌握运算法则.8、D【分析】根据切线的性质得到∠ABC=90°,根据直角三角形的性质求出∠A,根据圆周角定理计算即可.【题目详解】∵BC是⊙O的切线,∴∠ABC=90°,∴∠A=90°-∠ACB=40°,由圆周角定理得,∠BOD=2∠A=80°,故选D.【题目点拨】本题考查的是切线的性质、圆周角定理,掌握圆的切线垂直于经过切点的半径是解题的关键.9、C【解题分析】试题解析:∵抛物线的顶点坐标A(1,3),∴抛物线的对称轴为直线x=-=1,∴2a+b=0,所以①正确;∵抛物线开口向下,∴a<0,∴b=-2a>0,∵抛物线与y轴的交点在x轴上方,∴c>0,∴abc<0,所以②错误;∵抛物线的顶点坐标A(1,3),∴x=1时,二次函数有最大值,∴方程ax2+bx+c=3有两个相等的实数根,所以③正确;∵抛物线与x轴的一个交点为(4,0)而抛物线的对称轴为直线x=1,∴抛物线与x轴的另一个交点为(-2,0),所以④错误;∵抛物线y1=ax2+bx+c与直线y2=mx+n(m≠0)交于A(1,3),B点(4,0)∴当1<x<4时,y2<y1,所以⑤正确.故选C.考点:1.二次函数图象与系数的关系;2.抛物线与x轴的交点.10、C【分析】根据轴对称图形和中心对称图形的定义,即可得出答案.【题目详解】A.不是轴对称图形,也不是中心对称图形;B.不是轴对称图形,也不是中心对称图形;C.是轴对称图形,也是中心对称图形;D.是轴对称图形,不是中心对称图形.故选:C.【题目点拨】轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.二、填空题(每小题3分,共24分)11、32【分析】利用抛物线的解析式算出M的坐标和A的坐标,根据对称算出B和N的坐标,再利用两个三角形的面积公式计算和即可.【题目详解】∵,∴M(2,-4),令,解得x1=0,x2=4,∴A(0,4),∵B,N分别关于原点O的对称点是A,M,∴B(-4,-0),N(-2,4),∴AB=8,∴四边形AMBN的面积为:2S△ABM=,故答案为:32.【题目点拨】本题考查二次函数的性质,关键在于利用对称性得出坐标点.12、12【分析】确定正六边形的中心O,连接EO、FO,易证正六变形的边长等于其半径,可得正六边形的周长.【题目详解】解:如图,确定正六边形的中心O,连接EO、FO.由正六边形可得是等边三角形所以正六边形的周长为故答案为:【题目点拨】本题考查了正多边形与圆,灵活利用正多边形的性质是解题的关键.13、0.1【分析】由小亮每次投篮的投中的频率继而可估计出这名球员投一次篮投中的概率.【题目详解】解:∵0.75≈0.1,0.13≈0.1,0.12≈0.1,0.79≈0.1,…,∴可以看出小亮投中的频率大都稳定在0.1左右,∴估计小亮投一次篮投中的概率是0.1,故答案为:0.1.【题目点拨】本题比较容易,考查了利用频率估计概率.大量反复试验下频率值即概率.概率=所求情况数与总情况数之比.14、【分析】先求得正方形的边长,取AB的中点G,连接GF,CG,当点C、F、G在同一直线上时,根据两点之间线段最短,则CF有最小值,此时即可求得这个值.【题目详解】如图,连接OA、OD,取AB的中点G,连接GF,CG,∵ABCD是圆内接正方形,,∴,∴,∵AF⊥BE,∴,∴,,当点C、F、G在同一直线上时,CF有最小值,如下图:最小值是:,故答案为:【题目点拨】本题主要考查了正方形的性质,勾股定理,直角三角形斜边上的中线的性质,根据两点之间线段最短确定CF的最小值是解决本题的关键.15、1【分析】设配制比例为1:x,则A原液上涨后的成本是10(1+20%)元,B原液上涨后的成本是5(1+40%)x元,配制后的总成本是(10+5x)(1+),根据题意可得方程10(1+20%)+5(1+40%)x=(10+5x)(1+),解可得配制比例,然后计算出原来每千克的成本和售价,然后表示出此时每千克成本和售价,即可算出此时售价与原售价之差.【题目详解】解:设配制比例为1:x,由题意得:10(1+20%)+5(1+40%)x=(10+5x)(1+),解得x=4,则原来每千克成本为:=1(元),原来每千克售价为:1×(1+50%)=9(元),此时每千克成本为:1×(1+)(1+25%)=10(元),此时每千克售价为:10×(1+50%)=15(元),则此时售价与原售价之差为:15﹣9=1(元).故答案为:1.【题目点拨】本题考查了一元一次方程的应用,仔细阅读题目,找到关系式是解题的关键.16、1【分析】直接利用函数图象得出函数解析式,进而求出答案.【题目详解】设P=,把(0.5,2000)代入得:k=1000,故P=,当S=0.25时,P==1(Pa).故答案为:1.【题目点拨】此题主要考查了反比例函数的应用,正确求出函数解析会死是解题关键.17、-【解题分析】试题解析:由韦达定理可得:故答案为:点睛:一元二次方程根与系数的关系:18、【分析】利用完全平方式的结构特征判断即可确定出m的值.【题目详解】解:∵代数式x2+mx+1是一个完全平方式,
∴m=±2,
故答案为:±2【题目点拨】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.三、解答题(共66分)19、(1);(2)销售单价为50元时,每天获取的利润最大,最大利润是4000元;(3)44≤x≤56【分析】(1)直接利用待定系数法求出一次函数解析式即可;(2)利用w=销量乘以每件利润进而得出关系式求出答案;(3)利用w=3640,进而解方程,再利用二次函数增减性得出答案.【题目详解】解:(1)y与x之间的函数关系式为:把(35,350),(55,150)代入得:由题意得:解得:∴y与x之间的函数关系式为:.(2)设销售利润为W元则W=(x﹣30)•y=(x﹣30)(﹣10x+700),W=﹣10x2+1000x﹣21000W=﹣10(x﹣50)2+4000∴当销售单价为50元时,每天获取的利润最大,最大利润是4000元.(3)令W=3640∴﹣10(x﹣50)2+4000=3640∴x1=44,x2=56如图所示,由图象得:当44≤x≤56时,每天利润不低于3640元.【题目点拨】此题主要考查了二次函数的应用以及待定系数法求一次函数解析式,正确掌握二次函数的性质是解题关键.20、见详解【分析】根据正方形的判定定理,利用尺规先作出FD⊥BC,再作∠ABC的平分线交DF于点F,作∠BDF的平分线交AB于点E,进而即可作出正方形.【题目详解】如图所示:∴正方形就是所求图形.【题目点拨】本题主要考查正方形的判定定理和尺规作图,掌握尺规作角平分线和垂线,是解题的关键.21、(1)证明见解析;(2)【分析】(1)根据角平分线的定义结合两直线平行,内错角相等可得,然后利用等角对等边证明即可;(2)先证得为等腰三角形,设,,利用三角形内角和定理以及平行线性质定理证得,再利用同底等高的两个三角形面积相等即可求得答案.【题目详解】(1)平分,,又四边形是平行四边形,,,,;(2),,,为等腰三角形,设,,,,又,,,,即为直角三角形,四边形是平行四边形,,∴.【题目点拨】本题考查了平行四边形的性质,角平分线的定义,三角形内角和定理,等角对等边的性质,同底等高的两个三角形面积相等,证得为直角三角形是正确解答(2)的关键.22、(1)见解析;(2)OE=25【解题分析】(1)根据菱形的性质得到AD∥BC,推出四边形AECF是平行四边形,根据矩形的判定定理即可得到结论;(2)根据勾股定理得到BE=1,AC=45【题目详解】(1)证明:∵菱形ABCD,∴AD∥BC.∵CF∥AE,∴四边形AECF是平行四边形.∵AE⊥BC,∴平行四边形AECF是矩形.(2)解:∵AE=4,AD=5,∴AB=5,BE=1.∵AB=BC=5,∴CE=2.∴AC=45∵对角线AC,BD交于点O,∴AO=CO=25∴OE=25【题目点拨】本题考查了矩形的判定和性质,菱形的性质,勾股定理解直角三角形,正确的识别图形是解题的关键.23、(1)(0,2);(2);(3)m=2或.【分析】(1)是顶点式,可得到结论;
(2)把A点坐标代入得方程,于是得到结论;
(3)分两种情况:当抛物线开口向上或向下时,分别画出图形,找到临界位置关系,求出m的值,再进行分析变化趋势可得到结论.【题目详解】(1)是顶点式,顶点坐标为;(2)∵抛物线经过点,
∴m=9m+2,
解得:,∴(3)如图1,当抛物线开口向上时,抛物线顶点在线段上时,;当m>2时,直线x=1交抛物线于点(1,m+2),交点位于点B上方,所以此时线段与抛物线一定有两个交点,不符合题意;如图2,当抛物线开口向下时,抛物线顶过点时,;直线x=-3交抛物线于点(-3,9m+2),当时,9m+2<m,交点位于点A下方,直线x=1交抛物线于点(1,m+2),交点位于点B上方,所以此时线段与抛物线一定有且只有一个交点,符合题意;综上所述,当或时,抛物线与线段只有一个公共点.【题目点拨】本题考查了抛物线的性质,直线与抛物线的位置关系,考虑特殊情况是关键,考查了数形结合的数学思想.24、(1)β=90°-2α(0°<α<45°);(2)α=β=30°【分析】(1)首先证明,在中,根据两锐角互余,可知;(2)连接OF交AC于O′,连接CF,只要证明四边形AFCO是菱形,推出是等边三角形即可解决问题.【题目详解】解:(1)连接OC.∵DE是⊙O的切线
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 吉林师范大学《税务实务》2021-2022学年第一学期期末试卷
- 吉林师范大学《排水管网系统》2021-2022学年期末试卷
- 吉林师范大学《绘画基础一色彩静物》2021-2022学年第一学期期末试卷
- 医院文化活动组织与实施方案
- 实验小学特色课程招生方案
- 吉林师范大学《电动力学》2021-2022学年期末试卷
- 吉林大学《羽毛球I》2021-2022学年第一学期期末试卷
- 吉林大学《微机原理与应用A》2021-2022学年期末试卷
- 2024货运物流运输合同范本
- 2024灯饰采购合同范本
- 人教版数学三年级上册《分数的初步认识》课件 (共7张PPT)
- 5000吨每年聚丙烯酰胺工艺流程图
- DB64∕T 1754-2020 宁夏砖瓦用粘土矿产地质勘查技术规程
- PSUR模板仅供参考
- 火力发电企业作业活动风险分级管控清单(参考)
- 《锅炉水容积测试技术规范》团体标准
- 全国第四轮学科评估PPT幻灯片课件(PPT 24页)
- 子宫内膜息肉-PPT课件
- 桥梁施工各工序质量控制措施
- 保安队排班表
- 包头医学院新开课程申请表
评论
0/150
提交评论