陕西省兴平市秦岭中学2024届数学九上期末联考模拟试题含解析_第1页
陕西省兴平市秦岭中学2024届数学九上期末联考模拟试题含解析_第2页
陕西省兴平市秦岭中学2024届数学九上期末联考模拟试题含解析_第3页
陕西省兴平市秦岭中学2024届数学九上期末联考模拟试题含解析_第4页
陕西省兴平市秦岭中学2024届数学九上期末联考模拟试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

陕西省兴平市秦岭中学2024届数学九上期末联考模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.在一个不透明的布袋中装有9个白球和若干个黑球,它们除颜色不同外,其余均相同。若从中随机摸出一个球,摸到白球的概率是,则黑球的个数为()A.3 B.12 C.18 D.272.如图摆放的圆锥、圆柱、三棱柱、球,其主视图是三角形的是()A. B. C. D.3.计算的值是()A. B. C. D.4.如图,A、D是⊙O上的两个点,BC是直径,若∠D=35°,则∠OAC的度数是()A.35° B.55° C.65° D.70°5.在正方形网格中,的位置如图所示,则的值为()A. B. C. D.6.下列函数是二次函数的是().A.y=2x B.y=+xC.y=x+5 D.y=(x+1)(x﹣3)7.如图在中,弦于点于点,若则的半径的长为()A. B. C. D.8.点P(﹣1,2)关于原点对称的点Q的坐标为()A.(1,2) B.(﹣1,﹣2) C.(1.﹣2) D.(﹣1,﹣2)9.如图所示的几何体是由4个大小相同的小立方块搭成,它的俯视图是()A. B. C. D.10.如图,直线AB与半径为2的⊙O相切于点C,D是⊙O上一点,且∠EDC=30°,弦EF∥AB,则EF的长度为()A.2 B.2 C. D.2二、填空题(每小题3分,共24分)11.如图,矩形中,,,以为圆心,为半径画弧,交于点,则图中阴影部分的面积是_______.12.如图,为外一点,切于点,若,,则的半径是______.13.如图,在△ABC中,AB=AC,∠A=120°,BC=4,⊙A与BC相切于点D,且交AB,AC于M,N两点,则图中阴影部分的面积是_____(保留π).14.如图,已知四边形ABCD是菱形,BC∥x轴,点B的坐标是(1,),坐标原点O是AB的中点.动圆⊙P的半径是,圆心在x轴上移动,若⊙P在运动过程中只与菱形ABCD的一边相切,则点P的横坐标m的取值范围是_________.15.如图所示,点为矩形边上一点,点在边的延长线上,与交于点,若,,,则______.16.已知3a=4b≠0,那么=_____.17.如图,在四边形ABCD中,∠ABC=90°,对角线AC、BD交于点O,AO=CO,CD⊥BD,如果CD=3,BC=5,那么AB=_____.18.若一个反比例函数的图像经过点和,则这个反比例函数的表达式为__________.三、解答题(共66分)19.(10分)某鱼塘中养了某种鱼5000条,为了估计该鱼塘中该种鱼的总质量,从鱼塘中捕捞了3次,取得的数据如下:数量/条平均每条鱼的质量/kg第1次捕捞201.6第2次捕捞152.0第3次捕捞151.8(1)求样本中平均每条鱼的质量;(2)估计鱼塘中该种鱼的总质量;(3)设该种鱼每千克的售价为14元,求出售该种鱼的收入y(元)与出售该种鱼的质量x(kg)之间的函数关系,并估计自变量x的取值范围.20.(6分)将一副直角三角板按右图叠放.(1)证明:△AOB∽△COD;(2)求△AOB与△DOC的面积之比.21.(6分)已知关于x的一元二次方程x2+2x+2k-5=0有两个实数根.(1)求实数k的取值范围.(2)若方程的一个实数根为4,求k的值和另一个实数根.(3)若k为正整数,且该方程的根都是整数,求k的值.22.(8分)已知:△ABC在直角坐标平面内,三个顶点的坐标分别为A(0,3)、B(3,4)、C(2,2)(正方形网格中每个小正方形的边长是一个单位长度).(1)画出△ABC向下平移4个单位长度得到的△A1B1C1;(2)以点B为位似中心,在网格内画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2:1;(3)△A2B2C2的面积是平方单位.23.(8分)已知,如图在Rt△ABC中,∠B=90°,AB=6cm,BC=8cm,点P由点A出发沿AB方向向终点B匀速移动,速度为1cm/s,点Q由点B出发沿BC方向向终点C匀速移动,速度为2cm/s.如果动点P,Q同时从A,B出发,当P或Q到达终点时运动停止.几秒后,以Q,B,P为顶点的三角形与△ABC相似?24.(8分)求值:+2sin30°-tan60°-tan45°25.(10分)某厂生产的甲、乙两种产品,已知2件甲商品的出厂总价与3件乙商品的出厂总价相同,3件甲商品的出厂总价比2件乙商品的出厂总价多1500元.(1)求甲、乙商品的出厂单价分别是多少?(2)某销售商计划购进甲商品200件,购进乙商品的数量是甲的4倍.恰逢该厂正在对甲商品进行降价促销活动,甲商品的出厂单价降低了,该销售商购进甲的数量比原计划增加了,乙的出厂单价没有改变,该销售商购进乙的数量比原计划少了.结果该销售商付出的总货款与原计划的总货款恰好相同,求的值.26.(10分)某食品代理商向超市供货,原定供货价为元/件,超市售价为元/件.为打开市场超市决定在第一季度对产品打八折促销,第二季度再回升个百分点,为保证超市利润,代理商承诺在供货价基础上向超市返点试问平均每季度返多少个百分点,半年后超市的销售利润回到开始供货时的水平?

参考答案一、选择题(每小题3分,共30分)1、C【分析】设黑球个数为,根据概率公式可知白球个数除以总球数等于摸到白球的概率,建立方程求解即可.【题目详解】设黑球个数为,由题意得解得:故选C.【题目点拨】本题考查根据概率求数量,熟练掌握概率公式建立方程是解题的关键.2、D【解题分析】根据主视图是从物体正面看所得到的图形判断即可.【题目详解】A.主视图是圆;B.主视图是矩形;C.主视图是矩形;D.主视图是三角形.故选:D.【题目点拨】本题主要考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.3、A【解题分析】先算cos60°=,再计算即可.【题目详解】∵∴故答案选A.【题目点拨】本题考查特殊角的三角函数值,能够准确记忆60°角的余弦值是解题的关键.4、B【解题分析】解:∵∠D=35°,∴∠AOC=2∠D=70°,∴∠OAC=(180°-∠AOC)÷2=110°÷2=55°.故选B.5、A【分析】延长AB至D,使AD=4个小正方形的边长,连接CD,先证出△ADC是直角三角形和CD的长,即可求出的值.【题目详解】解:延长AB至D,使AD=4个小正方形的边长,连接CD,如下图所示,由图可知:△ADC是直角三角形,CD=3个小正方形的边长根据勾股定理可得:AC=个小正方形的边长∴故选A.【题目点拨】此题考查的是求一个角的正弦值,掌握构造直角三角形的方法是解决此题的关键.6、D【分析】直接利用二次函数的定义进而分析得出答案.【题目详解】解:A、y=2x,是一次函数,故此选项错误;B、y=+x,不是整式,故此选项错误;C、y=x+5,是一次函数,故此选项错误;D、y=(x+1)(x﹣3),是二次函数,故此选项正确.故选D.【题目点拨】此题主要考查了二次函数的定义,正确把握函数的定义是解题关键.7、C【分析】根据垂径定理求得OD,AD的长,并且在直角△AOD中运用勾股定理即可求解.【题目详解】解:弦,于点,于点,四边形是矩形,,,,;故选:.【题目点拨】本题考查了垂径定理、勾股定理、矩形的判定与性质;利用垂径定理求出AD,AE的长是解决问题的关键.8、C【分析】根据关于原点对称两个点坐标关系:横、纵坐标均互为相反数可得答案.【题目详解】解:点P(﹣1,2)关于原点对称的点Q的坐标为(1,﹣2),故选:C.【题目点拨】此题考查的是求一个点关于原点对称的对称点,掌握关于原点对称两个点坐标关系:横、纵坐标均互为相反数是解决此题的关键.9、C【解题分析】从上面可得:第一列有两个方形,第二列只有一个方形,只有C符合.

故选C10、B【解题分析】本题考查的圆与直线的位置关系中的相切.连接OC,EC所以∠EOC=2∠D=60°,所以△ECO为等边三角形.又因为弦EF∥AB所以OC垂直EF故∠OEF=30°所以EF=OE=2.二、填空题(每小题3分,共24分)11、【分析】阴影面积=矩形面积-三角形面积-扇形面积.【题目详解】作EFBC于F,如图所示:在Rt中,∴=2,∴,在Rt中,,∴,==故答案是:.【题目点拨】本题主要是利用扇形面积和三角形面积公式计算阴影部分的面积,解题关键是找到所求的量的等量关系.12、1【分析】由题意连接OA,根据切线的性质得出OA⊥PA,由已知条件可得△OAP是等腰直角三角形,进而可求出OA的长,即可求解.【题目详解】解:连接OA,∵PA切⊙O于点A,∴OA⊥PA,∴∠OAP=90°,∵∠APO=45°,∴OA=PA=1,故答案为:1.【题目点拨】本题考查切线的性质即圆的切线垂直于经过切点的半径.若出现圆的切线,连接过切点的半径,构造定理图,得出垂直关系.13、4.【分析】连接AD,分别求出△ABC和扇形AMN的面积,相减即可得出答案.【题目详解】解:连接AD,∵⊙A与BC相切于点D,∴AD⊥BC,∵AB=AC,∠A=120°,∴∠ABD=∠ACD=30°,BD=CD=,∴AB=2AD,由勾股定理知BD2+AD2=AB2,即+AD2=(2AD)2解得AD=2,∴△ABC的面积=,扇形MAN得面积=,∴阴影部分的面积=.故答案为:.【题目点拨】本题考查的是圆中求阴影部分的面积,解题关键在于知道阴影部分面积等于三角形ABC的面积减去扇形AMN的面积,要求牢记三角形面积和扇形面积的计算公式.14、或或或【分析】若⊙P在运动过程中只与菱形ABCD的一边相切,则需要对此过程分四种情况讨论,根据已知条件计算出m的取值范围即可.【题目详解】解:由B点坐标(1,),及原点O是AB的中点可知AB=2,直线AB与x轴的夹角为60°,又∵四边形ABCD是菱形,∴AD=AB=BC=CD=2,设DC与x轴相交于点H,则OH=4,(1)当⊙P与DC边相切于点E时,连接PE,如图所示,由题意可知PE=,PE⊥DC,∠PHE=60°,∴PH=2,∴此时点P坐标为(-6,0),所以此时.(2)当⊙P只与AD边相切时,如下图,∵PD=,∴PH=1,∴此时,当⊙P继续向右运动,同时与AD,BC相切时,PH=1,所以此时,∴当时,⊙P只与AD相切;,(3)当⊙P只与BC边相切时,如下图,⊙P与AD相切于点A时,OP=1,此时m=-1,⊙P与AD相切于点B时,OP=1,此时m=1,∴当,⊙P只与BC边相切时;,(4)当⊙P只与BC边相切时,如下图,由题意可得OP=2,∴此时.综上所述,点P的横坐标m的取值范围或或或.【题目点拨】本题考查圆与直线的位置关系,加上动点问题,此题难度较大,解决此题的关键是能够正确分类讨论,并根据已知条件进行计算求解.15、【分析】设,则,,与的交点为,首先根据同角的余角相等得到,可判定,利用对应边成比例推出,再根据平行线分线段成比例推出,进而求得,最后再次根据平行线分线段成比例得到.【题目详解】设,则,,与的交点为,,.∵,又∵,.,,∵DM∥CE.∴,.又∵AM∥CE.故答案为:.【题目点拨】本题考查了矩形的性质,相似三角形的判定和性质,以及平行线分线段成比例,利用相似三角形的性质求出DF是解题的关键.16、.【分析】根据等式的基本性质将等式两边都除以3b,即可求出结论.【题目详解】解:两边都除以3b,得=,故答案为:.【题目点拨】此题考查的是等式的基本性质,掌握等式的基本性质是解决此题的关键.17、【分析】过点A作AE⊥BD,由AAS得△AOE≌△COD,从而得CD=AE=3,由勾股定理得DB=4,易证△ABE∽△BCD,得,进而即可求解.【题目详解】过点A作AE⊥BD,∵CD⊥BD,AE⊥BD,∴∠CDB=∠AED=90°,CO=AO,∠COD=∠AOE,∴△AOE≌△COD(AAS)∴CD=AE=3,∵∠CDB=90°,BC=5,CD=3,∴DB==4,∵∠ABC=∠AEB=90°,∴∠ABE+∠EAB=90°,∠CBD+∠ABE=90°,∴∠EAB=∠CBD,又∵∠CDB=∠AEB=90°,∴△ABE∽△BCD,∴,∴,∴AB=.故答案为:.【题目点拨】本题主要考查相似三角形的判定和性质定理,全等三角形的判定和性质以及勾股定理,添加辅助线构造全等三角形,是解题的关键.18、【分析】这个反比例函数的表达式为,将A、B两点坐标代入,列出方程即可求出k的值,从而求出反比例函数的表达式.【题目详解】解:设这个反比例函数的表达式为将点和代入,得化简,得解得:(反比例函数与坐标轴无交点,故舍去)解得:∴这个反比例函数的表达式为故答案为:.【题目点拨】此题考查的是求反比例函数的表达式,掌握待定系数法是解决此题的关键.三、解答题(共66分)19、(1)1.78kg;(2)1kg;(3)y=14x,0≤x≤1.【分析】(1)根据平均数的公式求解即可;(2)根据每条鱼的平均质量×总条数=总质量即可得答案;(3)根据收入=单价×质量,列出函数表达式即可.【题目详解】(1)样本中平均每条鱼的质量为(kg).(2)∵样本中平均每条鱼的质量为1.78kg,∴估计鱼塘中该种鱼的总质量为1.78×5000=1(kg).(3)∵每千克的售价为14元,∴所求函数表达式为y=14x,∵该种鱼的总质量约为1kg,∴估计自变量x的取值范围为0≤x≤1.【题目点拨】本题考查一次函数的应用、用样本估计总体,明确题意,写出相应的函数关系式,利用平均数的知识求出每条鱼的质量是解题关键.20、(1)见解析;(2)1:1【分析】(1)推出∠OCD=∠A,∠D=∠ABO,就可得△AOB∽△COD;(2)设BC=a,则AB=a,BD=2a,由勾股定理知:CD=a,得AB:CD=1:,根据相似三角形性质可得面积比.【题目详解】解:(1)∵∠ABC=90°,∠DCB=90°∴AB∥CD,∴∠OCD=∠A,∠D=∠ABO,∴△AOB∽△COD(2)设BC=a,则AB=a,BD=2a由勾股定理知:CD=a∴AB:CD=1:∴△AOB与△DOC的面积之比等于1:1.【题目点拨】考核知识点:相似三角形的判定和性质.理解相似三角形的判定和性质是关键.21、(1)k≤1;(2)k的值为-,另一个根为-2;(1)k的值为1或1.【分析】(1)根据一元二次方程根的判别式列不等式即可得答案;(2)根据一元二次方程根与系数的关系即可得答案;(1)由(1)可得k≤1,根据k为正整数可得k=1,k=2或k=1,分别代入方程,求出方程的根,根据该方程的根都是整数即可得答案.【题目详解】(1)∵关于x的一元二次方程x2+2x+2k﹣5=0有两个实数根,∴△=22﹣4×1×(2k﹣5)=﹣8k+24≥0,解得:k≤1,∴k的取值范围是k≤1.(2)设方程的另一个根为m,∴4+m=-2,解得:m=-2,∴2k﹣5=4×(-2)∴k=-,∴k的值为-,另一个根为-2.(1)∵k为正整数,且k≤1,∴k=1或k=2或k=1,当k=1时,原方程为x2+2x﹣1=0,解得x1=﹣1,x2=1,当k=2时,原方程为x2+2x-1=0,解得x1=-1+,x2=-1-,(舍去)当k=1时,原方程为x2+2x+1=0,解得x1=x2=-1,∴k的值为1或1.【题目点拨】本题考查一元二次方程根的判别式及根与系数的关系,一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2-4ac:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程没有实数根;若方程的两个实数根为x1、x2,那么,x1+x2=,x1·x2=;正确运用一元二次方程的根的判别式并熟练掌握韦达定理是解题关键.22、(1)见解析;(2)见解析;(3)1【分析】(1)根据平移的方向与距离进行画图即可;(2)根据点B为位似中心,且位似比为2:1进行画图即可;(3)由网格特点可知,△ABC是等腰直角三角形,∠ACB=90°,根据坐标可求边长和面积,再根据相似比即可求出面积.【题目详解】解:(1)如图所示,△ABC向下平移4个单位长度得到的△A1B1C1;(2)如图所示,△A2B2C2即为所求;(3)则由网格特点可知:AC=BC=,AC⊥BC,∴△ABC的面积=.又∵△A2B2C2与△ABC位似,且位似比为2:1,∴△A2B2C2的面积=.故答案为:1.【题目点拨】本题主要考查了利用平移变换和位似变换进行作图,解决问题的关键是掌握:平移图形时,要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形.23、2.4秒或秒【分析】设t秒后,以Q,B,P为顶点的三角形与△ABC相似;则PB=(6-t)cm,BQ=2tcm

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论