湖南省师大附中2024届九年级数学第一学期期末学业质量监测模拟试题含解析_第1页
湖南省师大附中2024届九年级数学第一学期期末学业质量监测模拟试题含解析_第2页
湖南省师大附中2024届九年级数学第一学期期末学业质量监测模拟试题含解析_第3页
湖南省师大附中2024届九年级数学第一学期期末学业质量监测模拟试题含解析_第4页
湖南省师大附中2024届九年级数学第一学期期末学业质量监测模拟试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湖南省师大附中2024届九年级数学第一学期期末学业质量监测模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.如图,将△ABC绕点C顺时针旋转50°得△DEC,若AC⊥DE,则∠BAC等于()A.30° B.40° C.50° D.60°2.如图,四边形ABCD是圆内接四边形,E是BC延长线上一点,若∠BAD=105°,则∠DCE的大小是()A.115° B.105° C.100° D.95°3.某市为了改善城市容貌,绿化环境,计划过两年时间,绿地面积增加44%,这两年平均每年绿地面积的增长率是()A.19% B.20% C.21% D.22%4.如图,已知为的直径,点,在上,若,则()A. B. C. D.5.如图,,点O在直线上,若,,则的度数为()A.65° B.55° C.45° D.35°6.如图,菱形的边长是4厘米,,动点以1厘米/秒的速度自点出发沿方向运动,动点以2厘米/秒的速度自点出发沿方向运动至点停止,同时点也停止运动若点,同时出发运动了秒,记的面积为厘米2,下面图象中能表示与之间的函数关系的是()A. B. C. D.7.下列语句,错误的是()A.直径是弦 B.相等的圆心角所对的弧相等C.弦的垂直平分线一定经过圆心 D.平分弧的半径垂直于弧所对的弦8.如图,,,,四点都在上,,则的度数为()A. B. C. D.9.如图,⊙O的半径为1,点O到直线的距离为2,点P是直线上的一个动点,PA切⊙O于点A,则PA的最小值是()A.1 B. C.2 D.10.已知圆内接四边形ABCD中,∠A:∠B:∠C=1:2:3,则∠D的大小是()A.45° B.60° C.90° D.135°11.如图,在中,,将绕点逆时针旋转得到,其中点与点是对应点,且点在同一条直线上;则的长为()A. B. C. D.12.关于x的方程x2﹣mx+6=0有一根是﹣3,那么这个方程的另一个根是()A.﹣5 B.5 C.﹣2 D.2二、填空题(每题4分,共24分)13.如图,AC是⊙O的直径,B,D是⊙O上的点,若⊙O的半径为3,∠ADB=30°,则的长为____.14.代数式中的取值范围是__________.15.已知在中,,,,那么_____________.16.数据2,3,5,5,4的众数是____.17.如图,在△ABC中,P是AB边上的点,请补充一个条件,使△ACP∽△ABC,这个条件可以是:___(写出一个即可),18.在菱形中,周长为,,则其面积为______.三、解答题(共78分)19.(8分)(1)计算:计算:6cos45°+()﹣1+(﹣1.73)0+|5﹣3|+42017×(﹣0.25)2017;(2)先化简,再求值:÷,其中满足.20.(8分)解下列方程(1);(2).21.(8分)如图,在Rt△ABC中,∠ACB=90°,∠ABC=30°,AC=10cm,P为BC的中点,动点Q从点P出发,沿射线PC方向以cm/s的速度运动,以P为圆心,PQ长为半径作圆.设点Q运动的时间为t秒.(1)当t=2.5s时,判断直线AB与⊙P的位置关系,并说明理由.(2)已知⊙O为Rt△ABC的外接圆,若⊙P与⊙O相切,求t的值.22.(10分)如图,在矩形中对角线、相交于点,延长到点,使得四边形是一个平行四边形,平行四边形对角线交、分别为点和点.(1)证明:;(2)若,,则线段的长度.23.(10分)如图,直径为的圆柱形水管有积水(阴影部分),水面的宽度为,求水的最大深度.24.(10分)如图,四边形OABC为平行四边形,B、C在⊙O上,A在⊙O外,sin∠OCB=.(1)求证:AB与⊙O相切;(2)若BC=10cm,求图中阴影部分的面积.25.(12分)如图,点是反比例函数图象上的一点,过点作轴于点,连接,的面积为1.点的坐标为.若一次函数的图象经过点,交双曲线的另一支于点,交轴点.(1)求反比例函数和一次函数的解析式;(1)若为轴上的一个动点,且的面积为5,请求出点的坐标.26.如图,点D在⊙O的直径AB的延长线上,CD切⊙O于点C,AE⊥CD于点E(1)求证:AC平分∠DAE;(2)若AB=6,BD=2,求CE的长.

参考答案一、选择题(每题4分,共48分)1、B【分析】根据旋转的性质可求得∠ACD,根据互余关系可求∠D,根据对应角相等即可得∠BAC的大小.【题目详解】解:依题意得旋转角∠ACD=50°,由于AC⊥DE,由互余关系可得∠D=90°-50°=40°,由旋转后对应角相等,得∠BAC=∠D=40°,故B选项正确.【题目点拨】本题考查了图形的旋转变化,要分清是顺时针还是逆时针旋转,旋转了多少度,难度不大,但容易出错,细心点即可.2、B【分析】根据圆内接四边形的对角互补得到∠BAD+∠BCD=180°,而∠BCD与∠DEC为邻补角,得到∠DCE=∠BAD=105°.【题目详解】解:∵四边形ABCD是圆内接四边形,∴∠BAD+∠BCD=180°,而∠BCD+∠DCE=180°,∴∠DCE=∠BAD,而∠BAD=105°,∴∠DCE=105°.故选B.3、B【解题分析】试题分析:设这两年平均每年绿地面积的增长率是x,则过一年时间的绿地面积为1+x,过两年时间的绿地面积为(1+x)2,根据绿地面积增加44%即可列方程求解.设这两年平均每年绿地面积的增长率是x,由题意得(1+x)2=1+44%解得x1=0.2,x2=-2.2(舍)故选B.考点:一元二次方程的应用点评:提升对实际问题的理解能力是数学学习的指导思想,因而此类问题是中考的热点,在各种题型中均有出现,一般难度不大,需特别注意.4、C【分析】连接AD,根据同弧所对的圆周角相等,求∠BAD的度数,再根据直径所对的圆周角是90°,利用内角和求解.【题目详解】解:连接AD,则∠BAD=∠BCD=28°,∵AB是直径,∴∠ADB=90°,∴∠ABD=90°-∠BAD=90°-28°=62°.故选:C.【题目点拨】本题考查圆周角定理,运用圆周角定理是解决圆中角问题的重要途径,直径所对的圆周角是90°是圆中构造90°角的重要手段.5、B【解题分析】先根据,求出的度数,再由即可得出答案.【题目详解】解:∵,,∴.∵,∴.故选:B.【题目点拨】本题考查的是平行线的性质、垂线的性质,熟练掌握垂线的性质和平行线的性质是解决问题的关键.6、D【分析】用含t的代数式表示出BP,BQ的长,根据三角形的面积公式就可以求出S,从而得到函数的解析式,进一步即可求解.【题目详解】解:由题意得BP=4-t,BQ=2t,∴S=×2t××(4-t)=-t2+2t,∴当x=2时,S=-×4+2×2=2.∴选项D的图形符合.故选:D.【题目点拨】本题主要考查了动点问题的函数图象,利用图形的关系求函数的解析式,注意数形结合是解决本题的关键.7、B【分析】将每一句话进行分析和处理即可得出本题答案.【题目详解】A.直径是弦,正确.B.∵在同圆或等圆中,相等的圆心角所对的弧相等,∴相等的圆心角所对的弧相等,错误.C.弦的垂直平分线一定经过圆心,正确.D.平分弧的半径垂直于弧所对的弦,正确.故答案选:B.【题目点拨】本题考查了圆中弦、圆心角、弧度之间的关系,熟练掌握该知识点是本题解题的关键.8、C【分析】根据圆周角定理求出∠A,根据圆内接四边形的性质计算即可.【题目详解】由圆周角定理得,∠A=∠BOD=,∵四边形ABCD为⊙O的内接四边形,∴∠BCD=−∠A=,故选:C.【题目点拨】本题考查了圆周角定理以及圆内接四边形的性质,熟练掌握性质定理是解题的关键.9、B【分析】因为PA为切线,所以△OPA是直角三角形.又OA为半径为定值,所以当OP最小时,PA最小.根据垂线段最短,知OP=1时PA最小.运用勾股定理求解.【题目详解】解:作OP⊥a于P点,则OP=1.

根据题意,在Rt△OPA中,AP==故选:B.【题目点拨】此题考查了切线的性质及垂线段最短等知识点,如何确定PA最小时点P的位置是解题的关键,难度中等偏上.10、C【分析】根据圆内接四边形对角互补,结合已知条件可得∠A:∠B:∠C:∠D=1:2:3:2,∠B+∠D=180°,由此即可求得∠D的度数.【题目详解】∵四边形ABCD为圆的内接四边形,∠A:∠B:∠C=1:2:3,∴∠A:∠B:∠C:∠D=1:2:3:2,而∠B+∠D=180°,∴∠D=×180°=90°.故选C.【题目点拨】本题考查了圆内接四边形的性质,熟练运用圆内接四边形对角互补的性质是解决问题的关键.11、A【分析】根据旋转的性质说明△ACC′是等腰直角三角形,且∠CAC′=90°,理由勾股定理求出CC′值,最后利用B′C=CC′-C′B′即可.【题目详解】解:根据旋转的性质可知AC=AC′,∠ACB=∠AC′B′=45°,BC=B′C′=1,∴△ACC′是等腰直角三角形,且∠CAC′=90°,∴CC′==4,∴B′C=4-1=1.故选:A.【题目点拨】本题主要考查了旋转的性质、勾股定理,在解决旋转问题时,要借助旋转的性质找到旋转角和旋转后对应的量.12、C【分析】根据两根之积可得答案.【题目详解】设方程的另一个根为a,∵关于x的方程x2﹣mx+6=0有一根是﹣3,∴﹣3a=6,解得a=﹣2,故选:C.【题目点拨】本题主要考查了根与系数的关系,一元二次方程的根与系数的关系:若方程两个为,,则.二、填空题(每题4分,共24分)13、2π.【分析】根据圆周角定理求出∠AOB,得到∠BOC的度数,根据弧长公式计算即可.【题目详解】解:由圆周角定理得,∠AOB=2∠ADB=60°,∴∠BOC=180°﹣60°=120°,∴的长=,故答案为:2π.【题目点拨】本题考查的是圆周角定理、弧长的计算,掌握圆周角定理、弧长公式是解题的关键.14、;【分析】根据二次根式被开方数大于等于0,列出不等式即可求出取值范围.【题目详解】∵二次根式有意义的条件是被开方数大于等于0∴解得故答案为:.【题目点拨】本题考查二次根式有意义的条件,熟练掌握被开方数大于等于0是解题的关键.15、1【分析】根据三角函数的定义即可求解.【题目详解】∵cotB=,

∴AC==3BC=1.

故答案是:1.【题目点拨】此题考查锐角三角函数的定义及运用,解题关键在于掌握在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边,余切为邻边比对边.16、1【分析】由于众数是一组数据中出现次数最多的数据,注意众数可以不止一个,由此即可确定这组数据的众数.【题目详解】解:∵1是这组数据中出现次数最多的数据,∴这组数据的众数为1.故答案为:1.【题目点拨】本题属于基础题,考查了确定一组数据的众数的能力,解题关键是要明确定义,读懂题意.17、∠ACP=∠B(或).【分析】由于△ACP与△ABC有一个公共角,所以可利用两组对应边的比相等且夹角对应相等的两个三角形相似或有两组角对应相等的两个三角形相似进行添加条件.【题目详解】解:∵∠PAC=∠CAB,∴当∠ACP=∠B时,△ACP∽△ABC;当时,△ACP∽△ABC.故答案为:∠ACP=∠B(或).【题目点拨】本题考查了相似三角形的判定:两组对应边的比相等且夹角对应相等的两个三角形相似:有两组角对应相等的两个三角形相似.18、8【分析】根据已知求得菱形的边长,再根据含的直角三角形的性质求出菱形的高,从而可求菱形的面积.【题目详解】解:如图,作AE⊥BC于E,∵菱形的周长为,∴AB=BC=4,∵,∴AE==2,∴菱形的面积=.故答案是:8.【题目点拨】此题主要考查了菱形的性质,利用含的直角三角形的性质求出菱形的高是解题的关键.三、解答题(共78分)19、(1)8;(1)-1【解题分析】分析:(1)根据特殊角的三角函数值、负整数指数幂、零指数幂、绝对值、幂的乘方可以解答本题;(1)根据分式的加减法和除法可以化简题目中的式子,然后解方程,在其解中选一个使得原分式有意义的值代入即可解答本题.详解:(1)6cos45°+()-1+(-1.73)0+|5-3|+41017×(-0.15)1017=6×+3+1+5-3+41017×(-)1017=3+3+1+5−3−1=8;(1)÷==∵∴a=0或a=1(舍去)当a=0时,原式=-1.点睛:本题考查分式的化简求值、实数的运算、殊角的三角函数值、负整数指数幂、零指数幂、绝对值、幂的乘方,解答本题的关键是明确它们各自的计算方法.20、(1),;(2),.【分析】(1)利用因式分解法解方程;(2)先变形为(2x-1)2-(x-3)2=0,然后利用因式分解法解方程.【题目详解】(1),或,所以,;(2),,或,所以,.【题目点拨】本题考查了解一元二次方程-因式分解法:因式分解法就是先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).21、(1)相切,证明见解析;(2)t为s或s【分析】(1)直线AB与⊙P关系,要考虑圆心到直线AB的距离与⊙P的半径的大小关系,作PH⊥AB于H点,PH为圆心P到AB的距离,在Rt△PHB中,由勾股定理PH,当t=2.5s时,求出PQ的长,比较PH、PQ大小即可,(2)OP为两圆的连心线,圆P与圆O内切rO-rP=OP,圆O与圆P内切,rP-rO=OP即可.【题目详解】(1)直线AB与⊙P相切.理由:作PH⊥AB于H点,∵∠ACB=90°,∠ABC=30°,AC=10,∴AB=2AC=20,BC=,∵P为BC的中点∴BP=∴PH=BP=,当t=2.5s时,PQ=,∴PH=PQ=∴直线AB与⊙P相切,(2)连结OP,∵O为AB的中点,P为BC的中点,∴OP=AC=5,∵⊙O为Rt△ABC的外接圆,∴AB为⊙O的直径,∴⊙O的半径OB=10,∵⊙P与⊙O相切,∴PQ-OB=OP或OB-PQ=OP即t-10=5或10-t=5,∴t=或t=,故当t为s或s时,⊙P与⊙O相切.【题目点拨】本题考查直线与圆的位置关系,圆与圆相切时求运动时间t问题,关键点到直线的距离与半径是否相等,会求点到直线的距离,会用t表示半径与点到直线的距离,抓住两圆相切分清情况,由圆心在圆O内,没有外切,只有内切,要会分类讨论,掌握圆P与圆O内切rO-rP=OP,圆O与圆P内切,rP-rO=OP.22、(1)证明见解析;(2).【分析】(1)首先利用矩形和平行四边形平行的性质得出和,然后利用相似三角形对应边成比例,即可得证;(2)利用平行四边形对角线的性质以及勾股定理和相似三角形的性质进行等量转换,即可得解.【题目详解】(1)证明:∵是矩形,且,∴.∴.又∵是平行四边形,且AC∥DE∴,∴.∴.∴.(2)∵四边形为平行四边形,,相交点,∴∴在直角三角形中,∴又∵,∴.∴∴.【题目点拨】此题主要考查相似三角形的判定与性质以及勾股定理的运用,熟练掌握,即可解题.23、水的最大深度为【分析】先求出OA的长,再由垂径定理求出AC的长,根据勾股定理求出OC的长,进而可得出结论.【题目详解】解:∵的直径为,∴.∵,,∴,∴,∴.答:水的最大深度为.【题目点拨】本题考查的是垂径定理的应用,根据勾股定理求出OC的长是解答此题的关键.24、(1)见解析(2).【分析】连接OB,由sin∠OCB=求出∠OCB=45,再根据OB=OC及三角形的内角和求出∠BOC=90,再由四边形OABC为平行四边形,得出∠ABO=90即OB⊥AB,由此切线得到证明;(2)先求出半径,再由-S△BOC即可求出阴影部分的面积.【题目详解】连接OB,∵sin∠OCB=,∴∠OCB=45,∵OB=OC,∴∠OBC=∠OCB=45,∴∠BOC=90,∵四边形OABC为平行四边形,∴OC∥AB,∴∠ABO=90,即OB⊥AB,∴AB与⊙O相切;(2)在Rt△OBC中,BC=10,sin∠OCB=,∴,∴-S△BOC=.【题目点拨】此题考查圆的切线的判定定理、圆中阴影面积的求法,切线的判定口诀:有交点,连半径,证垂直;无交点,作垂直,证半径,熟记口诀并熟练用于解题是关键.在求阴影面积时,直线放在三角形或多边形中,弧线放在扇形中,再根据面积加减的关系求得.25、(1),;(1)P(0,5)或(0,1).【分析】(1)根据“点A是反比例函数图象上的一点,过点A作AB⊥x轴于点B,连接OA,△AOB的面积为1”即可求得k的值,从而得到反比例函数的解析式,分别将点A和点D的坐标代入反比

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论