版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届陕西省西安大学区六校联考数学九上期末调研模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.一元二次方程配方后化为()A. B. C. D.2.如图,点,分别在反比例函数,的图象上.若,,则的值为()A. B. C. D.3.如图,钓鱼竿AC长6m,露在水面上的鱼线BC长m,某钓者想看看鱼钓上的情况,把鱼竿AC转动到AC'的位置,此时露在水面上的鱼线B′C′为m,则鱼竿转过的角度是()A.60° B.45° C.15° D.90°4.以下事件为必然事件的是()A.掷一枚质地均匀的骰子,向上一面的点数小于6B.多边形的内角和是C.二次函数的图象不过原点D.半径为2的圆的周长是4π5.如图,将一副三角板如图放置,如果,那么点到的距离为()A. B. C. D.6.已知关于的一元二次方程有两个不相等的实数根,则的取值范围是()A.<2 B.<3 C.<2且≠0 D.<3且≠27.将抛物线先向左平移2个单位,再向下平移3个单位,得到的新抛物线的表达式为()A. B.C. D.8.如图,点A,B,C,D的坐标分别是(1,7),(1,1),(4,1),(6,1),以C,D,E为顶点的三角形与△ABC相似,则点E的坐标不可能是A.(6,0) B.(6,3) C.(6,5) D.(4,2)9.如图,一个可以自由转动的转盘,被分成了6个相同的扇形,转动转盘,转盘停止时,指针落在白色区域的概率等于()A. B. C. D.无法确定10.下列函数是二次函数的是()A.y=2x﹣3 B.y= C.y=(x﹣1)(x+3) D.二、填空题(每小题3分,共24分)11.如图,是等腰直角三角形,,以BC为边向外作等边三角形BCD,,连接AD交CE于点F,交BC于点G,过点C作交AB于点下列结论:;∽;;则正确的结论是______填序号12.如图,在半径AC为2,圆心角为90°的扇形内,以BC为直径作半圆,交弦AB于点D,连接CD,则图中阴影部分的面积是.13.超市经销一种水果,每千克盈利10元,每天销售500千克,经市场调查,若每千克涨价1元,日销售量减少20千克,现超市要保证每天盈利6000元,每千克应涨价为______元.14.如图,在平面直角坐标系中,点A在第二象限内,点B在x轴上,∠AOB=30°,AB=BO,反比例函数y=kx(x<0)的图象经过点A,若S△AOB=3,则k的值为________15.如图,已知菱形ABCD中,∠B=60°,点E在边BC上,∠BAE=25°,把线段AE绕点A逆时针方向旋转,使点E落在边CD上,那么旋转角的度数为______.16.在一个布袋中装有只有颜色不同的a个小球,其中红球的个数为2,随机摸出一个球记下颜色后再放回袋中,通过大量重复实验和发现,摸到红球的频率稳定于0.2,那么可以推算出a大约是____________.17.已知关于的一元二次方程的两个实数根分别是x=-2,x=4,则的值为________.18.已知二次函数y=x2﹣4x+3,当a≤x≤a+5时,函数y的最小值为﹣1,则a的取值范围是_______.三、解答题(共66分)19.(10分)如图,点是反比例函数上一点,过点作轴于点,点为轴上一点,连接.(1)求反比例函数的解析式;(2)求的面积.20.(6分)“万州古红桔”原名“万县红桔”,古称丹桔(以下简称为红桔),种植距今至少已有一千多年的历史,“玫瑰香橙”(源自意大利西西里岛塔罗科血橙,以下简称香橙)现已是万州柑橘发展的主推品种之一.某水果店老板在2017年11月份用15200元购进了400千克红桔和600千克香橙,已知香橙的每千克进价比红桔的每千克进价2倍还多4元.(1)求11月份这两种水果的进价分别为每千克多少元?(2)时下正值柑橘销售旺季,水果店老板决定在12月份继续购进这两种水果,但进入12月份,由于柑橘的大量上市,红桔和香橙的进价都有大幅下滑,红桔每千克的进价在11月份的基础上下降了%,香橙每千克的进价在11月份的基础上下降了%,由于红桔和“玫瑰香橙”都深受库区人民欢迎,实际水果店老板在12月份购进的红桔数量比11月份增加了%,香橙购进的数量比11月份增加了2%,结果12月份所购进的这两种柑橘的总价与11月份所购进的这两种柑橘的总价相同,求的值.21.(6分)已知:如图,在菱形ABCD中,E为BC边上一点,∠AED=∠B.(1)求证:△ABE∽△DEA;(2)若AB=4,求AE•DE的值.22.(8分)某汽车零部件生产企业的利润逐年提高,据统计,2015年利润为2亿元,2017年利润为2.88亿元,求该企业从2015年到2017年利润的年平均增长率.23.(8分)从甲、乙、丙、丁4名同学中随机抽取环保志愿者.求下列事件的概率:(1)抽取1名,恰好是甲;(2)抽取2名,甲在其中.24.(8分)已知点在二次函数的图象上,且当时,函数有最小值1.(1)求这个二次函数的表达式.(1)如果两个不同的点,也在这个函数的图象上,求的值.25.(10分)若二次函数y=ax2+bx﹣2的图象与x轴交于点A(4,0),与y轴交于点B,且过点C(3,﹣2).(1)求二次函数表达式;(2)若点P为抛物线上第一象限内的点,且S△PBA=5,求点P的坐标;(3)在AB下方的抛物线上是否存在点M,使∠ABO=∠ABM?若存在,求出点M到y轴的距离;若不存在,请说明理由.26.(10分)(1)计算(2)解方程.
参考答案一、选择题(每小题3分,共30分)1、A【分析】先把常数项移到方程的右边,再在方程两边同时加上一次项系数一半的平方,即可.【题目详解】移项得:,方程两边同加上9,得:,即:,故选A.【题目点拨】本题主要考查解一元二次方程的配方法,熟练掌握完全平方公式,是解题的关键.2、A【分析】分别过点A作AC⊥x轴于C,过点B作BD⊥x轴于D,根据点A所在的图象可设点A的坐标为(),根据相似三角形的判定证出△BDO∽△OCA,列出比例式即可求出点B的坐标,然后代入中即可求出的值.【题目详解】解:分别过点A作AC⊥x轴于C,过点B作BD⊥x轴于D,∵点在反比例函数,设点A的坐标为(),则OC=x,AC=,∴∠BDO=∠OCA=90°∵∴∠BOD+∠AOC=180°-∠AOB=90°,∠OAC+∠AOC=90°∴∠BOD=∠OAC∴△BDO∽△OCA∴解得:OD=2AC=,BD=2OC=2x,∵点B在第二象限∴点B的坐标为()将点B坐标代入中,解得故选A.【题目点拨】此题考查的是求反比例函数解析式相似三角形的判定及性质,掌握用待定系数法求反比例函数的解析式和构造相似三角形的方法是解决此题的关键.3、C【解题分析】试题解析:∵sin∠CAB=∴∠CAB=45°.∵,∴∠C′AB′=60°.∴∠CAC′=60°-45°=15°,鱼竿转过的角度是15°.故选C.考点:解直角三角形的应用.4、D【分析】必然事件是指一定会发生的事件,概率为1,根据该性质判断即可.【题目详解】掷一枚质地均匀的骰子,每一面朝上的概率为,而小于6的情况有5种,因此概率为,不是必然事件,所以A选项错误;多边形内角和公式为,不是一个定值,而是随着多边形的边数n的变化而变化,所以B选项错误;二次函数解析式的一般形式为,而当c=1时,二次函数图象经过原点,因此不是必然事件,所以C选项错误;圆周长公式为,当r=2时,圆的周长为4π,所以D选项正确.故选D.【题目点拨】本题考查了必然事件的概念,关键是根据不同选项所包含的知识点的概念进行判断对错;必然事件发生的概率为1,随机事件发生的概率为1<P<1,不可能事件发生的概率为1.5、B【分析】作EF⊥BC于F,设EF=x,根据三角函数分别表示出BF,CF,根据BD∥EF得到△BCD∽△FCE,得到,代入即可求出x.【题目详解】如图,作EF⊥BC于F,设EF=x,又∠ABC=45°,∠DCB=30°,则BF=EF÷tan45°=x,FC=EF÷tan30°=x∵BD∥EF∴△BCD∽△FCE,∴,即解得x=,x=0舍去故EF=,选B.【题目点拨】此题主要考查相似三角形的判定与性质,解题的关键是熟知相似三角形的判定及解直角三角形的应用.6、D【分析】根据方程有两个不相等的实数根结合二次项系数非0,即可得出关于k的一元一次不等式组,解不等式组即可得出结论.【题目详解】∵关于x的一元二次方程(k−2)x2−2x+1=0有两个不相等的实数根,∴,解得:k<3且k≠2.故选D.【题目点拨】本题考查根的判别式,解题突破口是得出关于k的一元一次不等式组.7、D【分析】根据抛物线的平移规律:左加右减,上加下减,即可得解.【题目详解】由题意,得平移后的抛物线为故选:D.【题目点拨】此题主要考查抛物线的平移规律,熟练掌握,即可解题.8、B【解题分析】试题分析:△ABC中,∠ABC=90°,AB=6,BC=3,AB:BC=1.A、当点E的坐标为(6,0)时,∠CDE=90°,CD=1,DE=1,则AB:BC=CD:DE,△CDE∽△ABC,故本选项不符合题意;B、当点E的坐标为(6,3)时,∠CDE=90°,CD=1,DE=1,则AB:BC≠CD:DE,△CDE与△ABC不相似,故本选项符合题意;C、当点E的坐标为(6,5)时,∠CDE=90°,CD=1,DE=4,则AB:BC=DE:CD,△EDC∽△ABC,故本选项不符合题意;D、当点E的坐标为(4,1)时,∠ECD=90°,CD=1,CE=1,则AB:BC=CD:CE,△DCE∽△ABC,故本选项不符合题意.故选B.9、C【分析】根据概率P(A)=事件A可能出现的结果数:所有可能出现的结果数可得答案.【题目详解】以自由转动的转盘,被分成了6个相同的扇形,白色区域有4个,因此=,故选:C.【题目点拨】此题主要考查概率的求解,解题的关键是熟知几何概率的求解方法.10、C【分析】根据二次函数的定义作出判断.【题目详解】解:A、该函数属于一次函数,故本选项错误;B、该函数未知数在分母位置,不符合二次函数的定义,故本选项错误;C、该函数符合二次函数的定义,故本选项正确;D、该函数只有一个变量不符合二次函数的定义,故本选项错误;故选:C.【题目点拨】此题考查的是二次函数的判断,掌握二次函数的定义是解决此题的关键.二、填空题(每小题3分,共24分)11、②③④【分析】根据题意证明∠CAE=∠ACE=45°,∠BCD=60°,AC=CD=BD=BC即可证明②正确,①错误,在△AEF中利用特殊三角函数即可证明③正确,在Rt△AOC中,利用即可证明④正确.【题目详解】解:由题可知,∠CAE=∠ACE=45°,∠BCD=60°,AC=CD=BD=BC,∴∠ACD=150°,∴∠CDA=∠CAD=15°,∴∠FCG=∠BDG=45°,∴,②正确,①错误,∵易证∠FAE=30°,设EF=x,则AE=CE=,∴,③正确,设CH与AD交点为O,易证∠FCO=30°,设OF=y,则CF=2y,由③可知,EF=()y,∴AF=()y,在Rt△AOC中,.故②③④正确.【题目点拨】本题考查了相似三角形的判定,特殊的直角三角形,三角函数的简单应用,难度较大,熟知特殊三角函数值是解题关键.12、π﹣1.【题目详解】解:在Rt△ACB中,AB==,∵BC是半圆的直径,∴∠CDB=90°,在等腰Rt△ACB中,CD垂直平分AB,CD=BD=,∴D为半圆的中点,S阴影部分=S扇形ACB﹣S△ADC==π﹣1.故答案为π﹣1.考点:扇形面积的计算.13、5或1【分析】设每千克水果应涨价x元,得出日销售量将减少20x千克,再由盈利额=每千克盈利×日销售量,依题意得方程求解即可.【题目详解】解:设每千克水果应涨价x元,依题意得方程:(500-20x)(1+x)=6000,整理,得x2-15x+50=0,解这个方程,得x1=5,x2=1.答:每千克水果应涨价5元或1元.故答案为:5或1.【题目点拨】本题考查了一元二次方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.14、-33【解题分析】如图所示,过点A作AD⊥OD,根据∠AOB=30°,AB=BO,可得∠DAB=60°,∠OAB=30°,所以∠BAD=30°,在Rt△ADB中,sin∠BAD=BDAB,即sin30°=BDAB=12,因为AB=BO,所以BDBO=12,所以S△ADBS△ABO=115、60°或70°.【分析】连接AC,根据菱形的性质及等边三角形的判定易证△ABC是等边三角形.分两种情况:①将△ABE绕点A逆时针旋转60°,点E可落在边DC上,此时△ABE与△ABE1重合;②将线段AE绕点A逆时针旋转70°,点E可落在边DC上,点E与点E2重合,此△AEC≌△AE2C.【题目详解】连接AC.∵菱形ABCD中,∠ABC=60°,∴△ABC是等边三角形,∴∠BAC=∠ACB=60°,∴∠ACD=60°.本题有两种情况:①如图,将△ABE绕点A逆时针旋转,使点B与点C重合,点E与点E1重合,此时△ABE≌△ABE1,AE=AE1,旋转角α=∠BAC=60°;②∵∠BAC=60°,∠BAE=25°,∴∠EAC=35°.如图,将线段AE绕点A逆时针旋转70°,使点E到点E2的位置,此时△AEC≌△AE2C,AE=AE2,旋转角α=∠EAE2=70°.综上可知,符合条件的旋转角α的度数为60度或70度.16、1【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,列出方程求解.【题目详解】解:由题意可得,=0.2,
解得,a=1.
故估计a大约有1个.
故答案为:1.【题目点拨】此题主要考查了利用频率估计概率,本题利用了用大量试验得到的频率可以估计事件的概率.关键是根据红球的频率得到相应的等量关系.17、-10【解题分析】根据根与系数的关系得出-2+4=-m,-2×4=n,求出即可.【题目详解】∵关于x的一元二次方程的两个实数根分别为x=-2,x=4,∴−2+4=−m,−2×4=n,解得:m=−2,n=−8,∴m+n=−10,故答案为:-10【题目点拨】此题考查根与系数的关系,掌握运算法则是解题关键18、﹣3≤a≤1【分析】求得对称轴,然后分三种情况讨论即可求得.【题目详解】解:∵二次函数y=x1﹣4x+3=(x﹣1)1﹣1,∴对称轴为直线x=1,当a<1<a+5时,则在a≤x≤a+5范围内,x=1时有最小值﹣1,当a≥1时,则在a≤x≤a+5范围内,x=a时有最小值﹣1,∴a1﹣4a+3=﹣1,解得a=1,当a+5≤1时,则在a≤x≤a+5范围内,x=a+5时有最小值﹣1,∴(a+5)1﹣4(a+5)+3=﹣1,解得a=﹣3,∴a的取值范围是﹣3≤a≤1,故答案为:﹣3≤a≤1.【题目点拨】本题考查了二次函数的最值,熟练掌握二次函数的性质是解题的关键.三、解答题(共66分)19、(1);(2)的面积为1.【分析】(1)把点代入反比例函数即可求出比例函数的解析式;(2)利用A,B点坐标进而得出AC,BC的长,然后根据三角形的面积公式求解即可.【题目详解】(1)点是反比例函数上一点,,故反比例函数的解析式为:;(2)点,点轴,,故的面积为:.【题目点拨】此题主要考查了待定系数法求反比例函数解析式,坐标与图形的性质,三角形的面积公式,熟练掌握待定系数法是解题关键.20、(1)11月份红桔的进价为每千克8元,香橙的进价为每千克20元;(2)m的值为49.1.【解题分析】(1)设11月份红桔的进价为每千克x元,香橙的进价为每千克y元,依题意有,解得,答:11月份红桔的进价为每千克8元,香橙的进价为每千克20元;(2)依题意有:8(1﹣m%)×400(1+m%)+20(1﹣m%)×100(1+2m%)=15200,解得m1=0(舍去),m2=49.1,故m的值为49.1.21、(1)见解析;(2)2【解题分析】试题分析:(1)根据菱形的对边平行,可得出∠1=∠2,结合∠AED=∠B即可证明两三角形都得相似.(2)根据(1)的结论可得出,进而代入可得出AE•DE的值.试题解析:(1)如图,∵四边形ABCD是菱形,∴AD∥BC.∴∠1=∠2.又∵∠B=∠AED,∴△ABE∽△DEA.(2)∵△ABE∽△DEA,∴.∴AE•DE=AB•DA.∵四边形ABCD是菱形,AB=1,∴AB=DA=1.∴AE•DE=AB2=2.考点:1.菱形的性质;2.相似三角形的判定和性质.22、该企业从2015年到2017年利润的年平均增长率为20%【解题分析】设该企业从2015年到2017年利润的年平均增长率为x,根据该企业2015年及2017年的年利润,即可得出关于x的一元二次方程,解之取其正值即可得出结论.【题目详解】设该企业从2015年到2017年利润的年平均增长率为x,根据题意得:2(1+x)2=2.88,解得:x1=0.2=20%,x2=-2.2(舍去).答:该企业从2015年到2017年利润的年平均增长率为20%.【题目点拨】本题考查了一元二次方程的应用,根据题意找准等量关系,正确列出一元二次方程是解题的关键.23、(1)14;(2)1【解题分析】试题分析:(1)根据概率的求法,找准两点:①全部等可能情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.因此,由从甲、乙、丙3名同学中随机抽取环保志愿者,直接利用概率公式求解即可求得答案.(2)利用列举法可得抽取2名,可得:甲乙,甲丙,乙丙,共3种等可能的结果,甲在其中的有2种情况,然后利用概率公式求解即可求得答案.试题解析:(1)∵从甲、乙、丙3名同学中随机抽取环保志愿者,∴抽取1名,恰好是甲的概率为:13(2)∵抽取2名,可得:甲乙,甲丙,乙丙,共3种等可能的结果,甲在其中的有2种情况,∴抽取2名,甲在其中的概率为:23考点:概率.24、(1);(1)【分析】(1)把点代入可得c的值,再将点代入,与对称轴等于1联立,即可求解;(1)易知点,纵坐标相同,即其关于对称轴对称,即可求解.【题目详解】解:(1)把点代入,可得,∵当时,函数有最小值1,∴,解得,∴二次函数解析式为;(1)∵点,纵坐标相同,∴点,关于二次函数图象的对称轴对称,∴,即.【题目点拨】本题考查二次函数的性质、求二次函数解析式,掌握二次函数的对称性是解题的关键.25、(1);(2);(3)存在,点M到y轴的距离为【分析】(1)由待定系数法可求解析式;(2)设直线BP与x轴交于点E,过点P作PD⊥OA于D,设点P(a,a2-a-2),则PD=a2-a-2,利用参数求出BP解析式,可求点E坐标,由三角形面积公式可求a,即可得点P坐标;(3)如图2,延长BM到N,使BN=BO,连接ON交AB于H,过点H
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 仓储委托协议(2024年版)
- 2024版建筑工程合同模板
- 住宅地产贷款合同
- 2024年学前教育机构前台职位合同
- 金融行业试用期合同评估标准
- 商业地产出租合同指导
- 外包施工合同管理最佳实践
- 短期租赁库房合同模板
- 电气安全高压试验服务合同
- 2024年硼酸铯锂晶体(CLBD)项目评价分析报告
- 钛合金相变及表征方法
- 湖北省十堰市各县区乡镇行政村村庄村名居民村民委员会明细
- (新版)重症专科护士考试题库(含答案)
- 个人收入证明免费打印
- 部编人教版八年级上册语文期末复习课件(专题三 名著阅读)
- 商务部绩效考核表
- 《对校园欺凌说“不”》教学课件-《心理健康教育》七年级下册
- 无犯罪记录证明书申请表模板(通用)
- 钢结构可行性分析报告
- 高中地理 选必一《自然环境的整体性》第二课时-教学设计
- 《纪念白求恩》朱德《纪念白求恩同志》教科书原文版
评论
0/150
提交评论