2024届江苏省南京市致远中学数学九年级第一学期期末监测试题含解析_第1页
2024届江苏省南京市致远中学数学九年级第一学期期末监测试题含解析_第2页
2024届江苏省南京市致远中学数学九年级第一学期期末监测试题含解析_第3页
2024届江苏省南京市致远中学数学九年级第一学期期末监测试题含解析_第4页
2024届江苏省南京市致远中学数学九年级第一学期期末监测试题含解析_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届江苏省南京市致远中学数学九年级第一学期期末监测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.如图是二次函数y=ax2+bx+c(a,b,c是常数,a≠0)图象的一部分,与x轴的交点A在点(2,0)和(3,0)之间,对称轴是x=1.对于下列说法:①ab<0;②2a+b=0;③3a+c>0;④a+b≥m(am+b)(m为实数);⑤当﹣1<x<3时,y>0,其中正确的是()A.①②④ B.①②⑤ C.②③④ D.③④⑤2.如图,∠A是⊙O的圆周角,∠A=40°,则∠OBC=()A.30° B.40° C.50° D.60°3.如图,∠1=∠2A.∠C=∠D B.∠B=∠AED4.关于x的一元二次方程x2+4x+k=0有两个相等的实数根,则k的值为()A.k=4 B.k=﹣4 C.k≥﹣4 D.k≥45.下列事件中,是必然事件的是()A.掷一枚质地均匀的骰子,向上一面的点数为偶数B.三角形的内角和等于180°C.不透明袋子中装有除色外无其它差别的9个白球,1个黑球,从中摸出一球为白球D.抛掷一枚质地均匀的硬币2次,出现1次“正面向上”,1次“反面向上”6.如图,OA是⊙O的半径,弦BC⊥OA,D是优弧上一点,如果∠AOB=58º,那么∠ADC的度数为()A.32º B.29º C.58º D.116º7.向阳村年的人均收入为万元,年的人均收入为万元.设年平均增长率为,根据题意,可列出方程为()A. B. C. D.8.如图,矩形OABC的顶点A、C分别在x、y轴上,反比例函数y=(x>0)的图象经过矩形OABC对角线的交点M,分别交AB、BC于点D、E.若四边形ODBE的面积为9,则k的值为()A.2 B. C.3 D.9.下列事件是必然事件的是()A.任意购买一张电影票,座号是“7排8号” B.射击运动员射击一次,恰好命中靶心C.抛掷一枚图钉,钉尖触地 D.13名同学中,至少2人出生的月份相同10.如图,在矩形中,对角线与相交于点,,垂足为点,,且,则的长为()A. B. C. D.二、填空题(每小题3分,共24分)11.如图,在一张矩形纸片ABCD中,AB=4,BC=8,点E,F分别在AD,BC上,将纸片ABCD沿直线EF折叠,点C落在AD上的一点H处,点D落在点G处,有以下四个结论:①四边形CFHE是菱形;②EC平分∠DCH;③线段BF的取值范围为3≤BF≤4;④当点H与点A重合时,EF=2.以上结论中,你认为正确的有.(填序号)12.关于的方程的一个根是,则它的另一个根是__________.13.如图,AB是⊙O的直径,点C是⊙O上的一点,若BC=3,AB=5,OD⊥BC于点D,则OD的长为_____.14.如图、正比例函数与反比例函数的图象交于(1,2),则在第一象限内不等式的解集为_____________.15.如图,Rt△OAB的顶点A(﹣2,4)在抛物线y=ax2上,将Rt△OAB绕点O顺时针旋转90°,得到△OCD,边CD与该抛物线交于点P,则点P的坐标为_____.16.关于的方程没有实数根,则的取值范围为____________17.一个圆锥的母线长为10,高为6,则这个圆锥的侧面积是_______.18.如图,矩形的顶点,在反比例函数的图象上,若点的坐标为,,轴,则点的坐标为__.三、解答题(共66分)19.(10分)已知抛物线与轴交于A,B两点(A在B左边),与轴交于C点,顶点为P,OC=2AO.(1)求与满足的关系式;(2)直线AD//BC,与抛物线交于另一点D,△ADP的面积为,求的值;(3)在(2)的条件下,过(1,-1)的直线与抛物线交于M、N两点,分别过M、N且与抛物线仅有一个公共点的两条直线交于点G,求OG长的最小值.20.(6分)已知关于x的一元二次方程.(1)求证:方程总有两个不相等的实数根.(2)若此方程的一个根是1,求出方程的另一个根及m的值.21.(6分)(1)计算:.(2)用适当的方法解下列方程;①;②.22.(8分)如图,为了估算河的宽度,我们可以在河对岸选定一点,再在河的这一边选定点和点,使得,然后选定点,使,确定与的交点,若测得米,米,米,请你求出小河的宽度是多少米?23.(8分)如图,在平面直角坐标系中,的顶点坐标分别为A(2,6),B(0,4),C(3,3).(正方形网格的每个小正方形的边长都是1个单位长度)(1)平移后,点A的对应点A1的坐标为(6,6),画出平移后的;(2)画出绕点C1旋转180°得到的;(3)绕点P(_______)旋转180°可以得到,请连接AP、A2P,并求AP在旋转过程中所扫过的面积.24.(8分)将正面分别写着数字1,2,3的三张卡片(注:这三张卡片的形状、大小、质地、颜色等其它方面完全相同,若背面朝上放在桌面上,这三张卡片看上去无任何差别)洗匀后,背面朝上方在桌面上,甲从中随机抽取一张卡片,记该卡片上的数字为,然后放回洗匀,背面朝上方在桌面上,再由乙从中随机抽取一张卡片,记该卡片上的数字为,组成一数对.(1)请写出.所有可能出现的结果;(2)甲、乙两人玩游戏,规则如下:按上述要求,两人各抽依次卡片,卡片上述资质和为奇数则甲赢,数字之和为偶数则乙赢,你认为这个游戏公平吗?请说明理由.25.(10分)如图,为等腰三角形,,是底边的中点,与腰相切于点.(1)求证:与相切;(2)已知,,求的半径.26.(10分)如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(1,3),B(2,5),C(4,2)(每个方格的边长均为1个单位长度)(1)将△ABC平移,使点A移动到点A1,请画出△A1B1C1;(2)作出△ABC关于O点成中心对称的△A2B2C2,并直接写出A2,B2,C2的坐标;(3)△A1B1C1与△A2B2C2是否成中心对称?若是,请写出对称中心的坐标;若不是,请说明理由.

参考答案一、选择题(每小题3分,共30分)1、A【分析】由抛物线的开口方向判断a与2的关系,由抛物线与y轴的交点判断c与2的关系,然后根据对称轴判定b与2的关系以及2a+b=2;当x=﹣1时,y=a﹣b+c;然后由图象确定当x取何值时,y>2.【题目详解】①∵对称轴在y轴右侧,∴a、b异号,∴ab<2,故正确;②∵对称轴∴2a+b=2;故正确;③∵2a+b=2,∴b=﹣2a,∵当x=﹣1时,y=a﹣b+c<2,∴a﹣(﹣2a)+c=3a+c<2,故错误;④根据图示知,当m=1时,有最大值;当m≠1时,有am2+bm+c≤a+b+c,所以a+b≥m(am+b)(m为实数).故正确.⑤如图,当﹣1<x<3时,y不只是大于2.故错误.故选A.【题目点拨】本题主要考查了二次函数图象与系数的关系,关键是熟练掌握①二次项系数a决定抛物线的开口方向,当a>2时,抛物线向上开口;当a<2时,抛物线向下开口;②一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>2),对称轴在y轴左;当a与b异号时(即ab<2),对称轴在y轴右.(简称:左同右异)③常数项c决定抛物线与y轴交点,抛物线与y轴交于(2,c).2、C【分析】根据一条弧所对的圆周角等于它所对的圆心角的一半求得∠BOC,再根据三角形的内角和定理以及等腰三角形的两个底角相等进行计算.【题目详解】解:根据圆周角定理,得∠BOC=2∠A=80°∵OB=OC∴∠OBC=∠OCB==50°,故选:C.【题目点拨】本题考查了圆周角定理,等腰三角形的性质,三角形内角和定理,掌握圆周角定理是解题的关键.3、D【解题分析】求出∠DAE=∠BAC,根据选项条件判定三角形相似后,可得对应边成比例,再把比例式化为等积式后即可判断.【题目详解】解:∵∠1=∠2,

∴∠1+∠BAE=∠2+∠BAE,

∴∠DAE=∠BAC,

A、∵∠DAE=∠BAC,∠D=∠C,

∴△ADE∽△ACB,∴AEAB∴AB·故本选项错误;

B、∵∠B=∠AED,∠DAE=∠BAC,

∴△ADE∽△ACB∴AEAB∴AB·故本选项错误;

C、∵AEAB=ADAC,∠∴△ADE∽△ACB,∴AEAB∴AB·故本选项错误;

D、∵∠DAE=∠BAC,AEAC=ADAB,

∴△∴ADAB∴AB·故本选项正确;

故选:D.【题目点拨】本题考查了相似三角形的判定和性质的应用,比例式化等积式,特别要注意确定好对应边,不要找错了.4、A【分析】根据方程有两个相等的实数根结合根的判别式即可得出关于k的一元一次方程,解之即可得出结论.【题目详解】解:∵关于x的一元二次方程x2+1x+k=0有两个相等的实数根,∴△=12﹣1k=16﹣1k=0,解得:k=1.故选:A.【题目点拨】本题考查了根的判别式以及解一元一次方程,熟练掌握“当△=0时,方程有两个相等的两个实数根”是解题的关键.5、B【分析】根据事件发生的可能性大小判断相应事件的类型.【题目详解】解:A、掷一枚质地均匀的骰子,向上一面的点数为偶数是随机事件;B、三角形的内角和等于180°是必然事件;C、不透明袋子中装有除色外无其它差别的9个白球,1个黑球,从中摸出一球为白球是随机事件;D、抛掷一枚质地均匀的硬币2次,出现1次“正面向上”,1次“反面向上”是随机事件;故选:B.【题目点拨】本题考查了必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.6、B【分析】根据垂径定理可得,根据圆周角定理可得∠AOB=2∠ADC,进而可得答案.【题目详解】解:∵OA是⊙O的半径,弦BC⊥OA,∴,∴∠ADC=∠AOB=29°.故选B.【题目点拨】此题主要考查了圆周角定理和垂径定理,关键是掌握圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.7、A【分析】设年平均增长率为,根据:2017年的人均收入×1+增长率=年的人均收入,列出方程即可.【题目详解】设设年平均增长率为,根据题意,得:,故选:A.【题目点拨】本题主要考查一元二次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程.8、C【分析】本题可从反比例函数图象上的点E、M、D入手,分别找出△OCE、△OAD、▱OABC的面积与|k|的关系,列出等式求出k值.【题目详解】解:由题意得:E、M、D位于反比例函数图象上,则,,过点M作MG⊥y轴于点G,作MN⊥x轴于点N,则S▱ONMG=|k|,又∵M为矩形ABCO对角线的交点,则S矩形ABCO=4S▱ONMG=4|k|,由于函数图象在第一象限,∴k>0,则,∴k=1.故选:C.【题目点拨】本题考查了反比例函数系数k的几何意义,过双曲线上的任意一点分别向两条坐标轴作垂线,与坐标轴围成的矩形面积就等于|k|.本知识点是中考的重要考点,同学们应高度关注.9、D【分析】根据必然事件的定义即可得出答案.【题目详解】ABC均为随机事件,D是必然事件,故答案选择D.【题目点拨】本题考查的是必然事件的定义:一定会发生的事情.10、C【分析】由矩形的性质得到:设利用勾股定理建立方程求解即可得到答案.【题目详解】解:矩形,设则,(舍去)故选C.【题目点拨】本题考查的是矩形的性质,勾股定理,掌握以上知识点是解题的关键.二、填空题(每小题3分,共24分)11、①③④【解题分析】解:∵FH与CG,EH与CF都是矩形ABCD的对边AD、BC的一部分,∴FH∥CG,EH∥CF,∴四边形CFHE是平行四边形,由翻折的性质得,CF=FH,∴四边形CFHE是菱形,(故①正确);∴∠BCH=∠ECH,∴只有∠DCE=30°时EC平分∠DCH,(故②错误);点H与点A重合时,设BF=x,则AF=FC=8﹣x,在Rt△ABF中,AB2+BF2=AF2,即42+x2=(8﹣x)2,解得x=3,点G与点D重合时,CF=CD=4,∴BF=4,∴线段BF的取值范围为3≤BF≤4,(故③正确);过点F作FM⊥AD于M,则ME=(8﹣3)﹣3=2,由勾股定理得,EF==2,(故④正确);综上所述,结论正确的有①③④共3个,故答案为①③④.考点:翻折变换的性质、菱形的判定与性质、勾股定理12、6【分析】根据一元二次方程的根与系数的关系解答即可.【题目详解】解:设方程的另一个根是,则,解得:.故答案为:6.【题目点拨】本题考查了一元二次方程根与系数的关系,属于基础题型,熟练掌握一元二次方程的两根之和与两根之积与其系数的关系是解此类题的关键.13、1【分析】先利用圆周角定理得到∠ACB=90°,则可根据勾股定理计算出AC=4,再根据垂径定理得到BD=CD,则可判断OD为△ABC的中位线,然后根据三角形中位线性质求解.【题目详解】∵AB是⊙O的直径,∴∠ACB=90°,∴AC==4,∵OD⊥BC,∴BD=CD,而OB=OA,∴OD为△ABC的中位线,∴OD=AC=×4=1.故答案为:1.【题目点拨】本题考查了圆周角定理的推论及垂径定理,掌握“直径所对的圆周角是直角”,及垂径定理是关键.14、x>1【分析】在第一象限内不等式k1x>的解集就是正比例函数图象都在反比例函数图象上方,即有y1>y2时x的取值范围.【题目详解】根据图象可得:第一象限内不等式k1x>

的解集为x>1.

故答案是:x>1.【题目点拨】此题考查反比例函数与一次函数的交点问题,待定系数法求函数解析式,解题关键在于掌握反比例函数与一次函数图象的交点坐标满足两函数解析式.15、(,2).【解题分析】由题意得:,即点P的坐标.16、【分析】根据题意利用根的判别式进行分析计算,即可求出的取值范围.【题目详解】解:∵关于的方程没有实数根,∴,解得.故答案为:.【题目点拨】本题考查根的判别式相关,熟练掌握一元二次方程中,当时,方程没有实数根是解答此题的关键.17、80π【分析】首先根据勾股定理求得圆锥的底面半径,从而得到底面周长,然后利用扇形的面积公式即可求解.【题目详解】解:圆锥的底面半径是:=8,圆锥的底面周长是:2×8π=16π,

则×16π×10=80π.故答案为:80π.【题目点拨】本题考查了圆锥的计算,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.18、.【分析】根据矩形的性质和点的坐标,即可得出的纵坐标为2,设,根据反比例函数图象上点的坐标特征得出,解得,从而得出的坐标为.【题目详解】点的坐标为,,,四边形是矩形,,轴,轴,点的纵坐标为2,设,矩形的顶点,在反比例函数的图象上,,,,故答案为.【题目点拨】本题考查了反比例函数图象上点的坐标特征,矩形的性质,求得的纵坐标为2是解题的关键.三、解答题(共66分)19、(1);(2);(3).【分析】(1)将抛物线解析式进行因式分解,可求出A点坐标,得到OA长度,再由C点坐标得到OC长度,然后利用OC=2AO建立等量关系即可得到关系式;(2)利用待定系数法求出直线BC的k,根据平行可知AD直线的斜率k与BC相等,可求出直线AD解析式,与抛物线联立可求D点坐标,过P作PE⊥x轴交AD于点E,求出PE即可表示△ADP的面积,从而建立方程求解;(3)为方便书写,可设抛物线解析式为:,设,,过点M的切线解析式为,两抛物线与切线联立,由可求k,得到M、N的坐标满足,将(1,-1)代入,推出G为直线上的一点,由垂线段最短,求出OG垂直于直线时的值即为最小值.【题目详解】解:(1)令y=0,,解得,令x=0,则∵,A在B左边∴A点坐标为(-m,0),B点坐标为(4m,0),C点坐标为(0,-4am2)∴AO=m,OC=4am2∵OC=2AO∴4am2=2m∴(2)∵∴C点坐标为(0,-2m)设BC直线为,代入B(4m,0),C(0,-2m)得,解得∵AD∥BC,∴设直线AD为,代入A(-m,0)得,,∴∴直线AD为直线AD与抛物线联立得,,解得或∴D点坐标为(5m,3m)又∵∴顶点P坐标为如图,过P作PE⊥x轴交AD于点E,则E点横坐标为,代入直线AD得∴PE=∴S△ADP=解得∵m>0∴∴.(3)在(2)的条件下,可设抛物线解析式为:,设,,过点M的切线解析式为,将抛物线与切线解析式联立得:,整理得,∵,∴方程可整理为∵只有一个交点,∴整理得即解得∴过M的切线为同理可得过N的切线为由此可知M、N的坐标满足将代入整理得将(1,-1)代入得在(2)的条件下,抛物线解析式为,即∴整理得∴G点坐标满足,即G为直线上的一点,当OG垂直于直线时,OG最小,如图所示,直线与x轴交点H(5,0),与y轴交点F(0,)∴OH=5,OF=,FH=∵∴∴OG的最小值为.【题目点拨】本题考查二次函数与一次函数的综合问题,难度很大,需要掌握二次函数与一次函数的图像与性质和较强的数形结合能力.20、(1)证明见解析;(2),2;【分析】(1)要证明方程有两个不相等的实数根,即证明△>1即可;(2)将x=1代入方程,求出m的值,进而得出方程的解.【题目详解】(1)证明:∵而≥1,∴△>1.∴方程总有两个不相等的实数根;(2)解:∵方程的一个根是1,∴1-(m+2)+2m-1=1,解得:m=2,∴原方程为:,解得:.即m的值为2,方程的另一个根是2.∴方程总有两个不相等的实数根;【题目点拨】此题考查了根的判别式,一元二次方程(a≠1)的根与△=有如下关系:(1)△>1方程有两个不相等的实数根;(2)△=1方程有两个相等的实数根;(2)△<1方程没有实数根.同时考查了一元二次方程的解的定义.第(2)问还可以利用根与系数的关系得到另一个解与m的二元一次方程组来解题.21、(1)1;(2)①x1=﹣2,x2=6;②x1=,x2=.【分析】(1)根据二次根式的乘法公式、30°的余弦值、60°的正切值和乘方的性质计算即可;(2)①利用直接开方法解一元二次方程即可;②利用公式法:解一元二次方程即可【题目详解】(1)﹣2cos30°﹣tan60°+(﹣1)2018=(2)①∵(x﹣2)2﹣16=0,∴(x﹣2)2=16,∴x﹣2=4或x﹣2=﹣4,解得:x1=﹣2,x2=6;②∵a=5,b=2,c=﹣1,∴△=b2-4ac=22﹣4×5×(﹣1)=24>0,则==,即x1=,x2=.【题目点拨】此题考查的是含特殊角的锐角三角函数值的混合运算和解一元二次方程,掌握二次根式的乘法公式、30°的余弦值、60°的正切值、乘方的性质和利用直接开方法和公式法解一元二次方程是解决此题的关键.22、小河的宽度是210米.【分析】先证明△ABD∽△ECD,然后利用相似比计算出AB即可得到小河的宽度.【题目详解】∵,,∴,∴,∴,即,∴.答:小河的宽度是210米.【题目点拨】本题考查了相似三角形的应用:利用相似测量河的宽度(测量距离).①测量原理:测量不能直接到达的两点间的距离,常常构造“A”型或“X”型相似图,三点应在一条直线上.必须保证在一条直线上,为了使问题简便,尽量构造直角三角形.②测量方法:通过测量便于测量的线段,利用三角形相似,对应边成比例可求出河的宽度.23、(1)图见解析;(2)图见解析;(3),AP所扫过的面积为.【分析】(1)先根据点A和的坐标得出平移方式,再根据点坐标的平移变换规律得出点的坐标,然后顺次连接点即可得;(2)先根据旋转的性质得出点的坐标,再顺次连接点即可得;(3)求出的中点坐标即为点P的坐标,再利用两点之间的距离公式可得AP的值,然后利用圆的面积公式即可得扫过的面积.【题目详解】(1)平移后得到点,的平移方式是向右平移个单位长度,,,即,如图,先在平面直角坐标系中,描出点,再顺次连接即可得到;(2)设点的坐标为,由题意得:点是的中点,则,解得,即,同理可得:,如图,先在平面直角坐标系中,描出点,再顺次连接点即可得到;(3)设点P的坐标为,由题意得:点P是的中点,则,即,,绕点旋转得到,所扫过的图形是以点P为圆心、AP长为半径的半圆,所扫过的面积为.【题目点拨】本题考查了图形的平移与旋转、点坐标的平移变换规律、圆的面积公式等知识点,熟练掌握点坐标的变换规律是解题关键.24、(1)见解析;(2)不公平,理由见解析【解题分析】(1)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论