2024届湖南省邵阳市邵东县九年级数学第一学期期末达标测试试题含解析_第1页
2024届湖南省邵阳市邵东县九年级数学第一学期期末达标测试试题含解析_第2页
2024届湖南省邵阳市邵东县九年级数学第一学期期末达标测试试题含解析_第3页
2024届湖南省邵阳市邵东县九年级数学第一学期期末达标测试试题含解析_第4页
2024届湖南省邵阳市邵东县九年级数学第一学期期末达标测试试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届湖南省邵阳市邵东县九年级数学第一学期期末达标测试试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.当k>0时,下列图象中哪些可能是y=kx与y=在同一坐标系中的图象()A. B. C. D.2.抛物线的对称轴为直线()A. B. C. D.3.一个几何体由大小相同的小方块搭成,从上面看到的几何体的形状图如图所示,其中小正方形中的数字表示在该位置的小立方块的个数,则从正面看到几何体的形状图是()A. B. C. D.4.已知,,那么ab的值为()A. B. C. D.5.在双曲线的每一分支上,y都随x的增大而增大,则k的值可以是()A.2 B.3 C.0 D.16.如图,点E为菱形ABCD边上的一个动点,并延A→B→C→D的路径移动,设点E经过的路径长为x,△ADE的面积为y,则下列图象能大致反映y与x的函数关系的是()A. B.C. D.7.如图,在菱形中,,,,则的值是()A. B.2 C. D.8.对于一个函数,自变量x取a时,函数值y也等于a,我们称a为这个函数的不动点.如果二次函数y=x2+2x+c有两个相异的不动点x1、x2,且x1<1<x2,则c的取值范围是()A.c<﹣3 B.c<﹣2 C.c< D.c<19.二次函数y=x2﹣6x图象的顶点坐标为()A.(3,0) B.(﹣3,﹣9) C.(3,﹣9) D.(0,﹣6)10.如图,已知AB是ʘO的直径,点P在B的延长线上,PD与⊙O相切于点D,过点B作PD的垂线交PD的延长线于点C.若⊙O的半径为1.BC=9,则PA的长为()A.8 B.4 C.1 D.511.将抛物线向左平移3个单位长度,再向上平移3个单位长度后,所得抛物线的解析式为()A. B.C. D.12.中国倡导的“一带一路”建设将促进我国与世界各国的互利合作,根据规划,“一带一路”地区覆盖总人口约为4400000000,这个数用科学记数法表示()A. B. C. D.二、填空题(每题4分,共24分)13.如图,矩形的面积为,它的对角线与双曲线相交于点,且,则________.14.计算:=______.15.如图,将面积为32的矩形ABCD沿对角线BD折叠,点A的对应点为点P,连接AP交BC于点E.若BE=,则AP的长为_____.16.一枚质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数,张兵同学掷一次骰子,骰子向上的一面出现的点数是3的倍数的概率是_____.17.中,若,,,则的面积为________.18.已知正方形ABCD的边长为,分别以B、D为圆心,以正方形的边长为半径在正方形内画弧,得到如图所示的阴影部分,若随机向正方形ABCD内投掷一颗石子,则石子落在阴影部分的概率为_____.(结果保留π)三、解答题(共78分)19.(8分)如图,在正方形中,,点在正方形边上沿运动(含端点),连接,以为边,在线段右侧作正方形,连接、.小颖根据学习函数的经验,在点运动过程中,对线段、、的长度之间的关系进行了探究.下面是小颖的探究过程,请补充完整:(1)对于点在、边上的不同位置,画图、测量,得到了线段、、的长度的几组值,如下表:位置位置位置位置位置位置位置在、和的长度这三个量中,确定的长度是自变量,的长度和的长度都是这个自变量的函数.(2)在同一平面直角坐标系中,画出(1)中所确定的函数的图象:(3)结合函数图像,解决问题:当为等腰三角形时,的长约为20.(8分)直线y=kx+b与反比例函数(x>0)的图象分别交于点A(m,4)和点B(8,n),与坐标轴分别交于点C和点D.(1)求直线AB的解析式;(2)观察图象,当x>0时,直接写出的解集;(3)若点P是x轴上一动点,当△COD与△ADP相似时,求点P的坐标.21.(8分)用适当的方法解方程:(1)(2).22.(10分)某服装店因为换季更新,采购了一批新服装,有A、B两种款式共100件,花费了6600元,已知A种款式单价是80元/件,B种款式的单价是40元/件(1)求两种款式的服装各采购了多少件?(2)如果另一个服装店也想要采购这两种款式的服装共60件,且采购服装的费用不超过3300元,那么A种款式的服装最多能采购多少件?23.(10分)实验探究:如图,和是有公共顶点的等腰直角三角形,,交于、点.(问题发现)(1)把绕点旋转到图,、的关系是_________(“相等”或“不相等”),请直接写出答案;(类比探究)(2)若,,把绕点旋转,当时,在图中作出旋转后的图形,并求出此时的长;(拓展延伸)(3)在(2)的条件下,请直接写出旋转过程中线段的最小值为_________.24.(10分)如图,在四边形ABCD中,E是AB的中点,AD//EC,∠AED=∠B.(1)求证:△AED≌△EBC;(2)当AB=6时,求CD的长.25.(12分)某商店购进一批成本为每件40元的商品,经调查发现,该商品每天的销售量(件与销售单价(元之间满足一次函数关系,其图象如图所示.(1)求该商品每天的销售量与销售单价之间的函数关系式;(2)若商店要使销售该商品每天获得的利润等于1000元,每天的销售量应为多少件?(3)若商店按单价不低于成本价,且不高于65元销售,则销售单价定为多少元时,才能使销售该商品每天获得的利润最大?最大利润是多少元?26.如图,一次函数y=kx+b(k≠0)与反比例函数y=(m≠0)的图象有公共点A(1,a)、D(﹣2,﹣1).直线l与x轴垂直于点N(3,0),与一次函数和反比例函数的图象分别交于点B、C.(1)求一次函数与反比例函数的解析式;(2)根据图象回答,x在什么范围内,一次函数的值大于反比例函数的值;(3)求△ABC的面积.

参考答案一、选择题(每题4分,共48分)1、B【分析】由系数即可确定与经过的象限.【题目详解】解:经过第一、三象限,经过第一、三象限,B选项符合.故选:B【题目点拨】本题考查了一次函数与反比例函数的图像,灵活根据的正负判断函数经过的象限是解题的关键.2、C【解题分析】根据二次函数对称轴公式为直线,代入求解即可.【题目详解】解:抛物线的对称轴为直线,故答案为C.【题目点拨】本题考查了二次函数的对称轴公式,熟记公式是解题的关键.3、D【解题分析】试题分析:根据所给出的图形和数字可得:主视图有3列,每列小正方形数目分别为3,2,3,则符合题意的是D;故选D.考点:1.由三视图判断几何体;2.作图-三视图.4、C【分析】利用平方差公式进行计算,即可得到答案.【题目详解】解:∵,,∴;故选择:C.【题目点拨】本题考查了二次根式的乘法运算,解题的关键是熟练运用平方差公式进行计算.5、C【分析】根据反比例函数的性质:当k-1<0时,在每一个象限内,函数值y随着自变量x的增大而增大作答.【题目详解】∵在双曲线的每一条分支上,y都随x的增大而增大,∴k-1<0,∴k<1,故选:C.【题目点拨】本题考查了反比例函数的性质.对于反比例函数,当k>0时,在每一个象限内,函数值y随自变量x的增大而减小;当k<0时,在每一个象限内,函数值y随自变量x增大而增大.6、D【解题分析】点E沿A→B运动,△ADE的面积逐渐变大;点E沿B→C移动,△ADE的面积不变;点E沿C→D的路径移动,△ADE的面积逐渐减小.故选D.点睛:本题考查函数的图象.分三段依次考虑△ADE的面积变化情况是解题的关键.7、B【分析】由菱形的性质得AD=AB,由,求出AD的长度,利用勾股定理求出DE,即可求出的值.【题目详解】解:在菱形中,有AD=AB,∵,AE=ADAD3,∴,∴,∴,∴,∴;故选:B.【题目点拨】本题考查了三角函数,菱形的性质,以及勾股定理,解题的关键是根据三角函数值正确求出菱形的边长,然后进行计算即可.8、B【分析】由题意知二次函数y=x2+2x+c有两个相异的不动点x1、x2,由此可知方程x2+x+c=0有两个不相等的实数根,即△=1-4c>0,再由题意可得函数y=x2+x+c=0在x=1时,函数值小于0,即1+1+c<0,由此可得关于c的不等式组,解不等式组即可求得答案.【题目详解】由题意知二次函数y=x2+2x+c有两个相异的不动点x1、x2,所以x1、x2是方程x2+2x+c=x的两个不相等的实数根,整理,得:x2+x+c=0,所以△=1-4c>0,又x2+x+c=0的两个不相等实数根为x1、x2,x1<1<x2,所以函数y=x2+x+c=0在x=1时,函数值小于0,即1+1+c<0,综上则,解得c<﹣2,故选B.【题目点拨】本题考查了二次函数与一元二次方程的关系,正确理解题中的定义,熟练掌握二次函数与一元二次方程的关系是解题的关键.9、C【分析】将二次函数解析式变形为顶点式,进而可得出二次函数的顶点坐标.【题目详解】解:∵y=x2﹣6x=x2﹣6x+9﹣9=(x﹣3)2﹣9,∴二次函数y=x2﹣6x图象的顶点坐标为(3,﹣9).故选:C.【题目点拨】此题主要考查二次函数的顶点,解题的关键是熟知二次函数的图像与性质.10、C【分析】连接OD,利用切线的性质可得∠PDO=90°,再判定△PDO∽△PCB,最后再利用相似三角形的性质列方程解答即可.【题目详解】解:连接DO∵PD与⊙O相切于点D,∴∠PDO=90°,∵BC⊥PC,∴∠C=90°,∴∠PDO=∠C,∴DO//BC,∴△PDO∽△PCB,∴,设PA=x,则,解得:x=1,∴PA=1.故答案为C.【题目点拨】本题考查了圆的切线性质以及相似三角形的判定与性质,证得△PDO∽△PCB是解答本题的关键.11、D【分析】先得到抛物线y=x2-2的顶点坐标为(0,-2),再把点(0,-2)向左平移3个单位长度,再向上平移3个单位长度所得点的坐标为(-3,1),得到平移后抛物线的顶点坐标,然后根据顶点式写出解析式即可.【题目详解】解:抛物线y=x2-2的顶点坐标为(0,-2),把点(0,-2)向左平移3个单位长度,再向上平移3个单位长度所得点的坐标为(-3,1),

所以平移后抛物线的解析式为y=(x+3)2+1,

故选:D.【题目点拨】本题考查了二次函数图象与几何变换:先把二次函数的解析式配成顶点式,然后把抛物线的平移问题转化为顶点的平移问题.12、C【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【题目详解】解:将4400000000用科学记数法表示为4.4×109.

故选C.【题目点拨】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.二、填空题(每题4分,共24分)13、12【解题分析】试题分析:由题意,设点D的坐标为(x,y),则点B的坐标为(,),所以矩形OABC的面积,解得∵图象在第一象限,∴.考点:反比例系数k的几何意义点评:反比例系数k的几何意义是初中数学的重点,是中考常见题,一般难度不大,需熟练掌握.14、4【分析】直接利用零指数幂的性质和绝对值的性质分别化简得出答案.【题目详解】解:原式=1+3=4.故答案为:4.【题目点拨】此题主要考查了零指数幂的性质和绝对值的性质,正确化简各数是解题关键.15、【解题分析】设AB=a,AD=b,则ab=32,构建方程组求出a、b值即可解决问题.【题目详解】设AB=a,AD=b,则ab=32,由∽可得:,∴,∴,∴,,设PA交BD于O,在中,,∴,∴,故答案为.【题目点拨】本题考查翻折变换、矩形的性质、勾股定理、相似三角形的判定与性质等知识,熟练掌握和应用相关的性质定理是解题的关键.16、1【分析】共有6种等可能的结果数,其中点数是3的倍数有3和6,从而利用概率公式可求出向上的一面出现的点数是3的倍数的概率.【题目详解】解:掷一次骰子,向上的一面出现的点数是3的倍数的有3,6,故骰子向上的一面出现的点数是3的倍数的概率是:26故答案为13【题目点拨】本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.17、【分析】过点A作BC边上的高交BC的延长线于点D,在中,利用三角函数求出AD长,再根据三角形面积公式求解即可.【题目详解】解:如图,作于点D,则,在中,所以的面积为故答案为:.【题目点拨】本题主要考查了三角函数,灵活添加辅助线利用三角函数求出三角形的高是解题的关键.18、【分析】先求出空白部分面积,进而得出阴影部分面积,再利用石子落在阴影部分的概率=阴影部分面积÷正方形面积,进而得出答案.【题目详解】∵扇形ABC中空白面积=,∴正方形中空白面积=2×(2﹣)=4﹣π,∴阴影部分面积=2﹣(4﹣π)=π﹣2,∴随机向正方形ABCD内投掷一颗石子,石子落在阴影部分的概率=.故答案为:.【题目点拨】本题主要考查扇形的面积公式和概率公式,通过割补法,求出阴影部分面积,是解题的关键.三、解答题(共78分)19、(1);(2)画图见解析;(3)或或【分析】(1)根据表格的数据,结合自变量与函数的定义,即可得到答案;(2)根据列表、描点、连线,即可得到函数图像;(3)可分为AE=DF,DF=DG,AE=DG,结合图像,即可得到答案.【题目详解】解:(1)根据表格可知,从0开始,而且不断增大,则DG是自变量;和随着DG的变化而变化,则AE和DF都是DG的函数;故答案为:,,.(2)函数图像,如图所示:(3)∵为等腰三角形,则可分为:AE=DF或DF=DG或AE=DG,三种情况;根据表格和函数图像可知,①当AE=DG=时,为等腰三角形;②当AE=时,DF=DG=5.00,为等腰三角形;③当AE=DF=时,为等腰三角形;故答案为:或或.【题目点拨】本题考查了函数的定义,自变量的定义,画函数图像,以及等腰三角形的定义,解题的关键是掌握函数的定义,准确画出函数图像.20、(1);(2)2<x<8;(3)点P的坐标为(2,0)或(0,0)时,△COD与△ADP相似.【解题分析】(1)首先确定A、B两点坐标,再利用待定系数法即可解决问题;(2)观察图象,根据A、B两点的横坐标即可确定.(3)分两种情形讨论求解即可.【题目详解】解:(1)∵点A(m,4)和点B(8,n)在图象上,∴,即A(2,4),B(8,1)把A(2,4),B(8,1)两点代入得解得:,所以直线AB的解析式为:(2)由图象可得,当x>0时,的解集为2<x<8.(3)由(1)得直线AB的解析式为,当x=0时,y=5,当y=0时,x=10,即C点坐标为(0,5),D点坐标为(10,0)∴OC=5,OD=10,∴设P点坐标为(a,0),由题可以,点P在点D左侧,则PD=10-a由∠CDO=∠ADP可得①当时,△COD∽△APD,此时AP∥CO,,解得a=2,故点P坐标为(2,0)②当时,△COD∽△PAD,即,解得a=0,即点P的坐标为(0,0)因此,点P的坐标为(2,0)或(0,0)时,△COD与△ADP相似.【题目点拨】本题是反比例函数综合题,还考查了一次函数的性质、相似三角形的判定和性质等知识,解题的关键是熟练掌握待定系数法确定函数解析式,学会用分类讨论的思想思考问题,属于中考常考题型.21、(1);;(2)=,=1.【分析】(1)用公式法求解;(2)用因式分解法求解.【题目详解】解:(1)a=2,b=3,c=-5,△=32-1×2×(-5)=19>0,所以x1===1,x1===;(2)[(x+3)+(1-2x)][(x+3)-(1-2x)]=0(-x+1)(3x+2)=0所以3x+2=0或-x+1=0,解得x1=,x2=1.【题目点拨】本题考查了一元二次方程的解法,根据方程的特点选择适当的方法是解决此题的关键.22、(1)A种款式的服装采购了65件,B种款式的服装采购了1件;(2)A种款式的服装最多能采购2件.【分析】(1)设A种款式的服装采购了x件,则B种款式的服装采购了(100﹣x)件,根据总价=单价×数量结合花费了6600元,即可得出关于x的一元一次方程,解之即可得出结论;(2)设A种款式的服装采购了m件,则B种款式的服装采购了(60﹣m)件,根据总价=单价×数量结合总费用不超过3300元,即可得出关于m的一元一次不等式,解之取其中最大的整数值即可得出结论.【题目详解】解:(1)设A种款式的服装采购了x件,则B种款式的服装采购了(100﹣x)件,依题意,得:80x+40(100﹣x)=6600,解得:x=65,∴100﹣x=1.答:A种款式的服装采购了65件,B种款式的服装采购了1件.(2)设A种款式的服装采购了m件,则B种款式的服装采购了(60﹣m)件,依题意,得:80m+40(60﹣m)≤3300,解得:m≤2.∵m为正整数,∴m的最大值为2.答:A种款式的服装最多能采购2件.【题目点拨】本题考查的是一元一次方程以及不等式在实际生活中的应用,难度不高,认真审题,列出方程是解决本题的关键.23、(1)相等;(2)或;(3)1.【分析】(1)依据△ABC和△ADE是有公共顶点的等腰直角三角形,∠BAC=∠DAE=90°,即可BA=CA,∠BAD=∠CAE,DA=EA,进而得到△ABD≌△ACE,可得出BD=CE;

(2)分两种情况:依据∠PDA=∠AEC,∠PCD=∠ACE,可得△PCD∽△ACE,即可得到,进而得到PD=;依据∠ABD=∠PBE,∠BAD=∠BPE=90°,可得△BAD∽△BPE,即可得到,进而得出PB=,PD=BD+PB=;

(3)以A为圆心,AC长为半径画圆,当CE在⊙A下方与⊙A相切时,PD的值最小.【题目详解】(1)∵△ABC和△ADE是有公共顶点的等腰直角三角形,∠BAC=∠DAE=90°,

∴BA=CA,DA=EA,∠BAC-∠DAC=∠DAE-∠DAC即∠BAD=∠CAE,在△ABD和△ACE中,∴△ABD≌△ACE(SAS),

∴BD=CE;

故答案为:相等.

(2)作出旋转后的图形,若点C在AD上,如图2所示:

∵∠EAC=90°,

∴CE=,

∵∠PDA=∠AEC,∠PCD=∠ACE,

∴△PCD∽△ACE,

∴,即

∴PD=

若点B在AE上,如图2所示:

∵∠BAD=90°,

∴Rt△ABD中,,BE=AE−AB=2,

∵∠ABD=∠PBE,∠BAD=∠BPE=90°,

∴△BAD∽△BPE,

∴,即,

解得PB=,

∴PD=BD+PB=,

综上可得,PD的长为或.

(2)如图3所示,以A为圆心,AC长为半径画圆,当CE在⊙A下方与⊙A相切时,PD的值最小

在Rt△PED中,PD=DE⋅sin∠PED,因此锐角∠PED的大小直接决定了PD的大小.

当小三角形旋转到图中△ACB的位置时,

在Rt△ACE中,CE=,

在Rt△DAE中,DE=,

∵四边形ACPB是正方形,

∴PC=AB=3,

∴PE=3+4=7,

在Rt△PDE中,PD=,

即旋转过程中线段PD的最小值为1.【题目点拨】本题考查了旋转与圆的综合问题,熟练掌握旋转的性质,全等三角形的判定与性质,圆的切线是解题的关键.24、(1)证明见解析;(2)CD=3【解题分析】分析:(1)根据二直线平行同位角相等得出∠A=∠BEC,根据中点的定义得出AE=BE,然后由ASA判断出△AED≌△EBC;(2)根据全等三角形对应边相等得出AD=EC,然后根据一组对边平行且相等的四边形是平行四边形得出四边形AECD是平行四边形,根据平行四边形的对边相等得出答案.详解:(1)证明:∵AD∥EC∴∠A=∠BEC∵E是AB中点,∴AE=BE∵∠AED=∠B∴△AED≌△EBC(2)解:∵△AED≌△EBC∴AD=EC∵AD∥EC∴四边形AECD是平行四边形∴CD=AE∵AB=6∴CD=AB=3点睛:本题考查全等三角形的判定和性质、平行四边形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.25、(1)y=-2x+200;(2)100件或20件;(3)销售单价定为65元时,该超市每天的利润最大,最大利润1750元【分析】(1)将点(40,120)、(60,80)代入一次函数表达式,即可求解;(2)由题意得(x-40)(-2x+200)=1000,解不等式即可得到结论;(3)由题意得w=(x-40)(-2x+200)=-2(x-70)2+1800,即可求解.【题目详解】(1)设y与销售

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论