广西南宁市广西大学附属中学2024届数学九上期末学业水平测试模拟试题含解析_第1页
广西南宁市广西大学附属中学2024届数学九上期末学业水平测试模拟试题含解析_第2页
广西南宁市广西大学附属中学2024届数学九上期末学业水平测试模拟试题含解析_第3页
广西南宁市广西大学附属中学2024届数学九上期末学业水平测试模拟试题含解析_第4页
广西南宁市广西大学附属中学2024届数学九上期末学业水平测试模拟试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

广西南宁市广西大学附属中学2024届数学九上期末学业水平测试模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.在正方形ABCD中,AB=3,点E在边CD上,且DE=1,将△ADE沿AE对折到△AFE,延长EF交边BC于点G,连接AG,CF.下列结论,其中正确的有()个.(1)CG=FG;(2)∠EAG=45°;(3)S△EFC=;(4)CF=GEA.1 B.2 C.3 D.42.用配方法解方程配方正确的是()A. B. C. D.3.已知二次函数的图象如图所示,下列结论:①,②,③,④,其中正确结论的个数为()A.4个 B.3个 C.2个 D.1个4.如图,是的弦,半径于点且则的长为().A. B. C. D.5.如图为4×4的正方形网格,A,B,C,D,O均在格点上,点O是()A.△ACD的外心 B.△ABC的外心 C.△ACD的内心 D.△ABC的内心6.如图,△ABC中,∠BAC=90°,AB=3,AC=4,点D是BC的中点,将△ABD沿AD翻折得到△AED,连CE,则线段CE的长等于()A.2 B. C. D.7.已知点都在双曲线上,且,则的取值范围是()A. B. C. D.8.如图,E是平行四边形ABCD的对角线BD上的点,连接AE并延长交BC于点F,且,则的值是()A. B. C. D.9.一次函数y=﹣3x+b图象上有两点A(x1,y1),B(x2,y2),若x1<x2,则y1,y2的大小关系是()A.y1>y2 B.y1<y2C.y1=y2 D.无法比较y1,y2的大小10.如图,要证明平行四边形ABCD为正方形,那么我们需要在四边形ABCD是平行四边形的基础上,进一步证明()A.AB=AD且AC⊥BD B.AB=AD且AC=BD C.∠A=∠B且AC=BD D.AC和BD互相垂直平分二、填空题(每小题3分,共24分)11.如图,在中,,分别是,上的点,平分,交于点,交于点,若,且,则_______.12.如图,反比例函数y=(x>0)经过A,B两点,过点A作AC⊥y轴于点C,过点B作BD⊥y轴于点D,过点B作BE⊥x轴于点E,连接AD,已知AC=1,BE=1,S△ACD=,则S矩形BDOE=______.13.如图,AB是⊙O的直径,AC是⊙O的切线,连结OC交⊙O于点D,连结BD,∠C=30°,则∠ABD的度数是_____°.14.一张等腰三角形纸片,底边长为15,底边上的高为22.5,现沿底边依次从下往上裁剪宽度均为3的矩形纸条,如图,已知剪得的纸条中有一张是正方形(正方形),则这张正方形纸条是第________张.15.如图,一块飞镖游戏板由大小相等的小正方形格子构成,向游戏板随机投掷一枚飞镖,击中黑色区域的概率是______.16.如图,直线y=kx与双曲线y=(x>0)交于点A(1,a),则k=_____.17.河北省赵县的赵州桥的拱桥是近似的抛物线形,建立如图所示的平面直角坐标系,其函数的关系式为,当水面离桥拱顶的高度DO为4m时,这时水面宽度AB为______________.18.从五个数1,2,3,4,5中随机抽出1个数,则数3被抽中的概率为_________.三、解答题(共66分)19.(10分)如图,函数y=2x和y=﹣x+4的图象相交于点A,(1)求点A的坐标;(2)根据图象,直接写出不等式2x≥﹣x+4的解集.20.(6分)如图,菱形ABCD的对角线AC和BD交于点O,AB=10,∠ABC=60°,求AC和BD的长.21.(6分)已知二次函数.(1)当二次函数的图象经过坐标原点O(0,0)时,求二次函数的解析式;(2)如图,当m=2时,该抛物线与y轴交于点C,顶点为D,求C、D两点的坐标;(3)在(2)的条件下,x轴上是否存在一点P,使得PC+PD最短?若P点存在,求出P点的坐标;若P点不存在,请说明理由.22.(8分)如图,在中,对角线AC与BD相交于点O,,,.求证:四边形ABCD是菱形.23.(8分)抛物线y=-2x2+8x-1.(1)用配方法求顶点坐标,对称轴;(2)x取何值时,y随x的增大而减小?24.(8分)如图,在平面直角坐标系中,直线与轴交于点,与轴交于点且与反比例函数在第一象限的图象交于点轴于点.根据函数图象,直接写出当反比例函数的函数值时,自变量的取值范围;动点在轴上,轴交反比例函数的图象于点.若.求点的坐标.25.(10分)小明大学毕业回家乡创业,第一期培植盆景与花卉各50盆售后统计,盆景的平均每盆利润是160元,花卉的平均每盆利润是19元,调研发现:①盆景每增加1盆,盆景的平均每盆利润减少2元;每减少1盆,盆景的平均每盆利润增加2元;②花卉的平均每盆利润始终不变.小明计划第二期培植盆景与花卉共100盆,设培植的盆景比第一期增加x盆,第二期盆景与花卉售完后的利润分别为W1,W2(单位:元)(1)用含x的代数式分别表示W1,W2;(2)当x取何值时,第二期培植的盆景与花卉售完后获得的总利润W最大,最大总利润是多少?26.(10分)如果三角形有一边上的中线恰好等于这边的长,那么称这个三角形为“匀称三角形”,这条中线为“匀称中线”.(1)如图①,在Rt△ABC中,∠C=90°,AC>BC,若Rt△ABC是“匀称三角形”.①请判断“匀称中线”是哪条边上的中线,②求BC:AC:AB的值.(2)如图②,△ABC是⊙O的内接三角形,AB>AC,∠BAC=45°,S△ABC=2,将△ABC绕点A逆时针旋转45°得到△ADE,点B的对应点为D,AD与⊙O交于点M,若△ACD是“匀称三角形”,求CD的长,并判断CM是否为△ACD的“匀称中线”.

参考答案一、选择题(每小题3分,共30分)1、C【分析】(1)根据翻折可得AD=AF=AB=3,进而可以证明△ABG≌△AFG,再设CG=x,利用勾股定理可求得x的值,即可证明CG=FG;(2)由(1)△ABG≌△AFG,可得∠BAG=∠FAG,进而可得∠EAG=45°;(3)过点F作FH⊥CE于点H,可得FH∥CG,通过对应边成比例可求得FH的长,进而可求得S△EFC=;(4)根据(1)求得的x的长与EF不相等,进而可以判断CF≠GE.【题目详解】解:如图所示:(1)∵四边形ABCD为正方形,∴AD=AB=BC=CD=3,∠BAD=∠B=∠BCD=∠D=90°,由折叠可知:AF=AD=3,∠AFE=∠D=90°,DE=EF=1,则CE=2,∴AB=AF=3,AG=AG,∴Rt△ABG≌Rt△AFG(HL),∴BG=FG,设CG=x,则BG=FG=3﹣x,∴EG=4﹣x,EC=2,根据勾股定理,得在Rt△EGC中,(4﹣x)2=x2+4,解得x=,则3﹣x=,∴CG=FG,所以(1)正确;(2)由(1)中Rt△ABG≌Rt△AFG(HL),∴∠BAG=∠FAG,又∠DAE=∠FAE,∴∠BAG+∠FAG+∠DAE+∠FAE=90°,∴∠EAG=45°,所以(2)正确;(3)过点F作FH⊥CE于点H,∴FH∥BC,∴,即1:(+1)=FH:(),∴FH=,∴S△EFC=×2×=,所以(3)正确;(4)∵GF=,EF=1,点F不是EG的中点,CF≠GE,所以(4)错误.所以(1)、(2)、(3)正确.故选:C.【题目点拨】此题考查正方形的性质,翻折的性质,全等三角形的判定及性质,勾股定理求线段长度,平行线分线段成比例,正确掌握各知识点并运用解题是关键.2、A【分析】本题可以用配方法解一元二次方程,首先将常数项移到等号的右侧,将等号左右两边同时加上一次项系数一半的平方,即可将等号左边的代数式写成完全平方形式.【题目详解】解:,,∴,.故选:.【题目点拨】此题考查配方法的一般步骤:①把常数项移到等号的右边;②把二次项的系数化为1;③等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.3、B【分析】由抛物线的开口方向、对称轴、与y轴的交点位置,可判断a、b、c的符号,可判断①,利用对称轴可判断②,由当x=-2时的函数值可判断③,当x=1时的函数值可判断④,从而得出答案.【题目详解】解:∵抛物线开口向下,与y轴的交点在x轴上方,∴a<0,c>0,∵0<-<1,∴b>0,且b<-2a,∴abc<0,2a+b<0,故①不正确,②正确;

∵当x=-2时,y<0,∴4a-2b+c<0,故③正确;∵当x=1时,y>0,∴a+b+c>0,又c>0,∴a+b+2c>0,故④正确;

综上可知正确的有②③④,

故选:B.【题目点拨】本题主要考查二次函数图象与系数之间的关系,解题关键是注意掌握数形结合思想的应用.4、D【解题分析】连接OA,∵OC⊥AB,AB=6则AD=3且OA2=OD2+AD2,∴OA2=16+9,∴OA=OC=5cm.∴DC=OC-OD=1cm故选D.5、B【解题分析】试题解析:由图可得:OA=OB=OC=,所以点O在△ABC的外心上,故选B.6、D【分析】如图连接BE交AD于O,作AH⊥BC于H.首先证明AD垂直平分线段BE,△BCE是直角三角形,求出BC、BE,在Rt△BCE中,利用勾股定理即可解决问题.【题目详解】如图连接BE交AD于O,作AH⊥BC于H.在Rt△ABC中,∵AC=4,AB=3,∴BC==5,∵CD=DB,∴AD=DC=DB=,∵•BC•AH=•AB•AC,∴AH=,∵AE=AB,DE=DB=DC,∴AD垂直平分线段BE,△BCE是直角三角形,∵•AD•BO=•BD•AH,∴OB=,∴BE=2OB=,在Rt△BCE中,EC=.故选D.点睛:本题考查翻折变换、直角三角形的斜边中线的性质、勾股定理等知识,解题的关键是学会利用面积法求高,属于中考常考题型.7、D【分析】分别将A,B两点代入双曲线解析式,表示出和,然后根据列出不等式,求出m的取值范围.【题目详解】解:将A(-1,y1),B(2,y2)两点分别代入双曲线,得,,∵y1>y2,,解得,故选:D.【题目点拨】本题考查了反比例函数图象上点的坐标特征,解不等式.反比例函数图象上的点的坐标满足函数解析式.8、A【分析】由BF∥AD,可得,再借助平行四边形的性质把AD转化为BC即可.【题目详解】∵四边形ABCD是平行四边形,∴AD=BC,∵,∴.∵BF∥AD,∴=.故选A【题目点拨】本题主要考查平行四边形的性质和平行线截线段成比例定理,掌握平行线截线段成比例定理是解题的关键.9、A【分析】根据一次函数图象的增减性判断即可.【题目详解】∵k=﹣3<0,∴y值随x值的增大而减小,又∵x1<x1,∴y1>y1.故选:A.【题目点拨】本题考查一次函数图象的增减性,关键在于先判断k值再根据图象的增减性判断.10、B【解题分析】解:A.根据有一组邻边相等的平行四边形是菱形,或者对角线互相垂直的平行四边形是菱形,所以不能判断平行四边形ABCD是正方形;B.根据邻边相等的平行四边形是菱形,对角线相等的平行四边形为矩形,所以能判断四边形ABCD是正方形;C.根据一组邻角相等的平行四边形是矩形,对角线相等的平行四边形也是矩形,即只能证明四边形ABCD是矩形,不能判断四边形ABCD是正方形;D.根据对角线互相垂直的平行四边形是菱形,对角线互相平分的四边形是平行四边形,所以不能判断四边形ABCD是正方形.故选B.二、填空题(每小题3分,共24分)11、3:1【分析】根据题意利用相似三角形的性质即相似三角形的对应角平分线的比等于相似比即可解决问题.【题目详解】解:∵∠DAE=∠CAB,∠AED=∠B,∴△ADE∽△ACB,∵GA,FA分别是△ADE,△ABC的角平分线,∴(相似三角形的对应角平分线的比等于相似比),AG:FG=3:2,∴AG:AF=3:1,∴DE:BC=3:1,故答为3:1.【题目点拨】本题考查相似三角形的判定和性质、解题的关键是灵活运用所学知识解决问题,属于中考常考题型,难度一般.12、1【分析】根据三角形的面积求出CD,OC,进而确定点A的坐标,代入求出k的值,矩形BDOE的面积就是|k|,得出答案.【题目详解】∵AC=1,S△ACD=,∴CD=3,∵ODBE是矩形,BE=1,∴OD=1,OC=OD+CD=1,∴A(1,1)代入反比例函数关系式得,k=1,∴S矩形BDOE=|k|=1,故答案为:1.【题目点拨】本题考查了反比例函数的几何问题,掌握反比例函数的性质以及三角形的面积公式是解题的关键.13、30°【分析】根据切线的性质求出∠OAC,结合∠C=30°可求出∠AOC,根据等腰三角形性质求出∠B=∠BDO,根据三角形外角性质求出即可.【题目详解】解:∵AC是⊙O的切线,∴∠OAC=90°,∵∠C=30°,∴∠AOC=90°﹣30°=60°,∵OB=OD,∴∠ABD=∠BDO,∵∠ABD+∠BDO=∠AOC,∴∠ABD=AOC=30°,故答案为:30°.【题目点拨】本题考查了切线的性质,三角形外角性质,三角形内角和定理,等腰三角形性质的应用,解此题的关键是求出∠AOC的度数.14、6【分析】设第x张为正方形纸条,由已知可知,根据相似三角形的性质有,从而可计算出x的值.【题目详解】如图,设第x张为正方形纸条,则∵∴∴即解得故答案为6【题目点拨】本题主要考查相似三角形的性质,掌握相似三角形的性质是解题的关键.15、【分析】求出黑色区域面积与正方形总面积之比即可得答案.【题目详解】图中有9个小正方形,其中黑色区域一共有3个小正方形,所以随意投掷一个飞镖,击中黑色区域的概率是,故答案为.【题目点拨】本题考查了几何概率,熟练掌握概率的计算公式是解题的关键.注意面积之比几何概率.16、1【解题分析】解:∵直线y=kx与双曲线y=(x>0)交于点A(1,a),∴a=1,k=1.故答案为1.17、【题目详解】根据题意B的纵坐标为﹣4,把y=﹣4代入y=﹣x2,得x=±10,∴A(﹣10,﹣4),B(10,﹣4),∴AB=20m.即水面宽度AB为20m.18、【解题分析】分析:直接利用概率公式求解即可求出答案.详解:从1,2,3,4,5中随机取出1个不同的数,共有5种不同方法,其中3被抽中的概率为.故答案为.点睛:本题考查了概率公式的应用,用到的知识点为:概率=所求情况数与总情况数之比.三、解答题(共66分)19、(1)A的坐标为(,3);(2)x≥.【解题分析】试题分析:(1)联立两直线解析式,解方程组即可得到点A的坐标;(2)根据图形,找出点A右边的部分的x的取值范围即可.试题解析:(1)由,解得:,∴A的坐标为(,3);(2)由图象,得不等式2x≥-x+4的解集为:x≥.20、AC=10,BD=10【分析】根据菱形的性质可得Rt△ABO中,∠ABO=∠ABD=∠ABC=30°,则可得AO和BO的长,根据AC=2AO,BD=2BO可得AC和BD的长;【题目详解】解:∵四边形ABCD是菱形,∴AC⊥BD,OA=OC=AC,OB=OD=BD,∠ABD=∠ABC=30°,在Rt△ABO中,AB=10,∠ABO=∠ABD=30°,∴AO=AB=5,BO=AB=5,∴AC=2AO=10,BD=2BO=10.【题目点拨】本题主要考查了菱形的性质,解直角三角形,掌握菱形的性质,解直角三角形是解题的关键.21、(1)或;(2)C点坐标为:(0,3),D(2,-1);(3)P(,0).【分析】(1)根据二次函数的图象经过坐标原点O(0,0),直接代入求出m的值即可.(2)把m=2,代入求出二次函数解析式,利用配方法求出顶点坐标以及图象与y轴交点即可.(3)根据两点之间线段最短的性质,当P、C、D共线时PC+PD最短,利用相似三角形的判定和性质得出PO的长即可得出答案.【题目详解】解:(1)∵二次函数的图象经过坐标原点O(0,0),∴代入得:,解得:m=±1.∴二次函数的解析式为:或.(2)∵m=2,∴二次函数为:.∴抛物线的顶点为:D(2,-1).当x=0时,y=3,∴C点坐标为:(0,3).(3)存在,当P、C、D共线时PC+PD最短.过点D作DE⊥y轴于点E,∵PO∥DE,∴△COP∽△CED.∴,即,解得:∴PC+PD最短时,P点的坐标为:P(,0).22、见解析【分析】根据平行四边形的性质得到AO和BO,再根据AB,利用勾股定理的逆定理得到∠AOB=90°,从而判定菱形.【题目详解】解:∵四边形ABCD是平行四边形,AC=16,BD=12,∴AO=8,BO=6,∵AB=10,∴AO2+BO2=AB2,∴∠AOB=90°,即AC⊥BD,∴平行四边形ABCD是菱形.【题目点拨】本题考查了菱形的判定,勾股定理的逆定理,解题的关键是证明∠AOB=90°.23、(1)(2,2),x=2(2)当x≥2时,y随x的增大而减小【解题分析】(1)利用配方法将抛物线解析式边形为y=-2(x-2)2+2,由此即可得出抛物线的顶点坐标以及抛物线的对称轴;(2)由a=-2<0利用二次函数的性质即可得出:当x≥2时,y随x的增大而减小,此题得解.【题目详解】(1)∵y=-2x2+8x-1=-2(x2-4x)-1=-2(x2-4x+4)+8-1=-2(x-2)2+2,∴该抛物线的顶点坐标为(2,2),对称轴为直线x=2.(2)∵a=-2<0,∴当x≥2时,y随x的增大而减小.【题目点拨】本题考查了二次函数的三种形式以及二次函数的性质,利用配方法将二次函数解析式的一般式换算成顶点式是解题的关键.24、或.或.【分析】(1)根据函数图象即可得出答案(2)由已知条件得出点C的坐标为(2,5),再利用B,C的坐标求出直线AC的解析式,可求出A的坐标为(-2,0),由已知条件得出三角形POQ的面积为5,则三角形PAC的面积为10,再利用三角形面积公式可求出PA的值,进而确定P点的坐标.【题目详解】解:由已知图象得出,当时,y<0,当x=2时,y=5,∴时,所以,x的取值范围为:或.轴于点.点的横坐标为.把代入反比例函数,得.设直线的解析式为,把代入,得直线的解析式为令,解得.轴,点在反比例函数的图象上则,或.【题目点拨】本题是一道一次函数与反比例函数相结合的题目,用到的知识点有一次函数的图象与二次函数的图象与性质,此类题目往往需要利用数形结合的方法来求解.25、(1)W1=-2x²+60x+8000,W2=-19x+950;(2)当x=10时,W总最大为9160元.【解题分析】(1)第二期培植的盆景比第一期增加x盆,则第二期培植盆景(50+x)盆,花卉(50-x)盆,根据盆景每增加1盆,盆景的平均每盆利润减少2元;每减少1盆,盆景的平均每盆利润增加2元,②花卉的平均每盆利润始终不变,即可得到利润W1,W2与x的关系式;(2)由W总=W1+W2可得关于x的二次函数,利用二次函数的性质即可得.【题目详解】(1)第二期培植的盆景比第一期增加x盆,则第二期培植盆景(50+x)盆,花卉[100-(50+x)]=(50-x)盆,由题意得W1=(50+x)(160-2x)=-2x²+60x+8000,W2=19(50-x)=-19x+950;(2)W总=W1+W2=-2x²+60x+8000+(-19x+950)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论