带电粒子在有界磁场中运动的临界问题_第1页
带电粒子在有界磁场中运动的临界问题_第2页
带电粒子在有界磁场中运动的临界问题_第3页
带电粒子在有界磁场中运动的临界问题_第4页
带电粒子在有界磁场中运动的临界问题_第5页
已阅读5页,还剩1页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

-.z.带电粒子在有界磁场中运动的临界问题的解题技巧带电粒子(质量m、电量q确定)在有界磁场中运动时,涉及的可能变化的参量有——入射点、入射速度大小、入射方向、出射点、出射方向、磁感应强度大小、磁场方向等,其中磁感应强度大小与入射速度大小影响的都是轨道半径的大小,可归并为同一因素(以“入射速度大小”代表),磁场方向在一般问题中不改变,若改变,也只需将已讨论情况按反方向偏转再分析一下即可。在具体问题中,这五个参量一般都是已知两个,剩下其他参量不确定(但知道变化*围)或待定,按已知参数可将问题分为如下10类(),并可归并为6大类型。类型已知参量类型一①⑩入射点、入射方向;出射点、出射方向类型二②⑧入射点、速度大小;出射点、速度大小类型三③入射点、出射点类型四⑦入射方向、出射方向类型五⑤⑨入射方向、速度大小;出射方向、速度大小;类型六④⑥入射点、出射方向;出射点,入射方向入射点入射点入射方向入射速度大小出射点出射方向①②③④⑧⑨⑤⑤⑥⑦⑩所有这些问题,其通用解法是:①第一步,找准轨迹圆圆心可能的位置,②第二步,按一定顺序尽可能多地作不同圆心对应的轨迹圆(一般至少5画个轨迹圆),③第三步,根据所作的图和题设条件,找出临界轨迹圆,从而抓住解题的关键点。类型一:已知入射点和入射速度方向,但入射速度大小不确定(即轨道半径不确定)这类问题的特点是:所有轨迹圆圆心均在过入射点、垂直入射速度的同一条直线上。【例1】如图所示,长为L的水平极板间有垂直于纸面向内的匀强磁场,磁感应强度为B,板间距离也为L,板不带电.现有质量为m、电荷量为q的带正电粒子(不计重力),从左边极板间中点处垂直磁感线以速度v水平射入磁场,欲使粒子不打在极板上,可采用的办法是A.使粒子的速度v<eq\f(BqL,4m) B.使粒子的速度v>eq\f(5BqL,4m)C.使粒子的速度v>eq\f(BqL,m) D.使粒子的速度eq\f(BqL,4m)<v<eq\f(5BqL,4m)图乙图甲①②【分析】粒子初速度方向已知,故不同速度大小的粒子轨迹圆圆心均在垂直初速度的直线上(如图甲),在该直线上取不同点为圆心,半径由小取到大,作出一系列圆(如图乙),其中轨迹圆①和②为临界轨迹圆。轨道半径小于轨迹圆①或大于轨迹圆图乙图甲①②【解答】AB粒子擦着板从右边穿出时,圆心在O点,有r12=L2+(r1-eq\f(L,2))2,得r1=eq\f(5L,4)由r1=eq\f(mv1,Bq),得v1=eq\f(5BqL,4m),所以v>eq\f(5BqL,4m)时粒子能从右边穿出.粒子擦着上板从左边穿出时,圆心在O′点,有r2=eq\f(L,4)由r2=eq\f(mv2,Bq),得v2=eq\f(BqL,4m),所以v<eq\f(BqL,4m)时粒子能从左边穿出.类型二:已知入射点和入射速度大小(即轨道半径大小),但入射速度方向不确定这类问题的特点是:所有轨迹圆的圆心均在一个“圆心圆”上——所谓“圆心圆”,是指以入射点为圆心,以为半径的圆。【例2】如图所示,在0≤*≤a、0≤y≤*围内有垂直手*y平面向外的匀强磁场,磁感应强度大小为B。坐标原点O处有一个粒子源,在*时刻发射大量质量为m、电荷量为q的带正电粒子,它们的速度大小相同,速度方向均在*Oy平面内,与y轴正方向的夹角分布在0~*围内。己知粒子在磁场中做圆周运动的半径介于a/2到a之间,从发射粒子到粒子全部离开磁场经历的时间恰好为粒子在磁场中做圆周运动周期的四分之一。求最后离开磁场的粒子从粒子源射出时的(1)速度的大小;(2)速度方向与y轴正方向夹角的正弦。【分析】本题给定的情形是粒子轨道半径r大小确定但初速度方向不确定,所有粒子的轨迹圆都要经过入射点O,入射点O到任一圆心的距离均为r,故所有轨迹圆的圆心均在一个“圆心圆”——以入射点O为圆心、r为半径的圆周上(如图甲)。考虑到粒子是向右偏转,我们从最左边的轨迹圆画起——取“圆心圆”上不同点为圆心、r为半径作出一系列圆,如图乙所示;其中,轨迹①对应弦长大于轨迹②对应弦长——半径一定、圆心角都较小时(均小于180°),弦长越长,圆心角越大,粒子在磁场中运动时间越长——故轨迹①对应圆心角为90°。图乙图乙图甲①②【解答】设粒子的发射速度为v,粒子做圆周运动的轨道半径为R,根据牛顿第二定律和洛伦兹力得:Oy*COy*CRDAaPαααv当a/2<R<a时,在磁场中运动的时间最长的粒子,其轨迹是圆心为C的圆弧,圆弧与磁场的边界相切,如图所示,设该粒子在磁场中运动的时间为t,依题意,t=T/4时,∠OCA=π/2设最后离开磁场的粒子的发射方向与y轴正方向的夹角为α,由几何关系得:,且解得:这类题作图要讲一个小技巧——按粒子偏转方向移动圆心作图。【练习2】如图所示,在正方形区域abcd内充满方向垂直纸面向里的、磁感应强度为B的匀强磁场。在t=0时刻,一位于ad边中点O的粒子源在abcd平面内发射出大量的同种带电粒子,所有粒子的初速度大小相同,方向与Od边的夹角分布在0~180°*围内。已知沿Od方向发射的粒子在t=t0时刻刚好从磁场边界cd上的p点离开磁场,粒子在磁场中做圆周运动的半径恰好等于正方形边长L,粒子重力不计,求: (1)粒子的比荷q/m; (2)假设粒子源发射的粒子在0~180°*围内均匀分布,此时刻仍在磁场中的粒子数与粒子源发射的总粒子数之比;O3p×O3p××××abcdO××××××××××××p××××abcdO××××××××××××①②③④O1O2O4pp××××abcdO××××××××××××图甲图乙【分析】以L为半径、O点为圆心作“圆心圆”(如图甲);由于粒子逆时针偏转,从最下面的轨迹开始画起(轨迹①),在“圆心圆”取不同点为圆心、以L为半径作出一系列圆(如图乙);其中轨迹①与轨迹④对称,在磁场中运动时间相同;轨迹②并不经过c点,轨迹②对应弦长短于轨迹③对应弦长——即沿轨迹③运动的粒子最后离开磁场。【解答】(1)初速度沿Od方向发射的粒子在磁场中运动的轨迹如图,其圆心为n,由几何关系有:,粒子做圆周运动的向心力由洛仑兹力提供,根据牛顿第二定律得,得 (2)依题意,同一时刻仍在磁场中的粒子到O点距离相等。在t0时刻仍在磁场中的粒子应位于以O为园心,Op为半径的弧pw上。由图知 此时刻仍在磁场中的粒子数与总粒子数之比为5/6(3)在磁场中运动时间最长的粒子的轨迹应该与磁场边界b点相交,设此粒子运动轨迹对应的圆心角为θ,则 在磁场中运动的最长时间 所以从粒子发射到全部离开所用时间为 。类型三:已知入射点和出射点,但未知初速度大小(即未知半径大小)和方向这类问题的特点是:所有轨迹圆圆心均在入射点和出射点连线的中垂线上。【例3】如图所示,无重力空间中有一恒定的匀强磁场,磁感应强度的方向垂直于*Oy平面向外,大小为B,沿*轴放置一个垂直于*Oy平面的较大的荧光屏,P点位于荧光屏上,在y轴上的A点放置一放射源,可以不断地沿平面内的不同方向以大小不等的速度放射出质量为m、电荷量+q的同种粒子,这些粒子打到荧光屏上能在屏上形成一条亮线,P点处在亮线上,已知OA=OP=l,求:(1)若能打到P点,则粒子速度的最小值为多少?(2)若能打到P点,则粒子在磁场中运动的最长时间为多少?【分析】粒子既经过A点又经过P点,因此AP连线为粒子轨迹圆的一条弦,圆心必在该弦的中垂线OM上(如图甲)。在OM上取不同点为圆心、以圆心和A点连线长度为半径由小到大作出一系列圆(如图乙),其中轨迹①对应半径最小,而轨迹②对应粒子是O1点上方轨道半径最大的,由图可知其对应圆心角也最大。O2O2O1O1①②图甲图乙MM【解答】(1)粒子在磁场中运动,洛伦兹力提供向心力,设粒子的速度大小为v时,其在磁场中的运动半径为R,则由牛顿第二定律有: qBv=m*若粒子以最小的速度到达P点时,其轨迹一定是以AP为直径的圆(如图中圆O1所示)由几何关系知: sAP=R=*则粒子的最小速度 v=(2)粒子在磁场中的运动周期T=设粒子在磁场中运动时其轨迹所对应的圆心角为θ,则粒子在磁场中的运动时间为:由图可知,在磁场中运动时间最长的粒子的运动轨迹如图中圆O2所示,此时粒子的初速度方向竖直向上,则由几何关系有: 则粒子在磁场中运动的最长时间: 类型四:已知初、末速度的方向(所在直线),但未知初速度大小(即未知轨道半径大小)这类问题的特点是:所有轨迹圆的圆心均在初、末速度延长线形成的角的角平分线上。【例4】在*Oy平面上的*圆形区域内,存在一垂直纸面向里的匀强磁场,磁感应强度大小为B.一个质量为m、带电量为+q的带电粒子,由原点O开始沿*正方向运动,进入该磁场区域后又射出该磁场;后来,粒子经过y轴上的P点,此时速度方向与y轴的夹角为30°(如图所示),已知P到O的距离为L,不计重力的影响。(1)若磁场区域的大小可根据需要而改变,试求粒子速度的最大可能值;(2)若粒子速度大小为,试求该圆形磁场区域的最小面积。30oyvLOPQCA图甲*PLOyv30oQ30oyvLOPQCA图甲*PLOyv30oQCA图乙①②*3030oyvLOP*图丙Ly30ovOQCAP①*【解答】过P点作末速度所在直线,交*轴于图丙Ly30ovOQCAP①*设粒子在磁场中作匀速圆周运动的轨道半径为r,则由牛顿第二定律,有则①由此可知粒子速度越大,其轨道半径越大,由图乙可知,速度最大的粒子在磁场中运动轨迹的圆心是y轴上的C点。(1)如图丙所示,速度最大时粒子的轨迹圆过O点、且与PQ相切于A点。 由几何关系有,,可得②由①、②求得③(2)将代入①式,可得,粒子的运动轨迹是如图丁所示的轨迹圆②,该轨迹圆与*轴相切于D点、与PQ相切于E点。连接DE,由几何关系可知由于D点、E点必须在磁场内,即线段DE在磁场内,故可知Py30o*②Py30o*②LO③图丁AvCQDE小的磁场半径为 则磁场的最小面积为类型五:已知初速度的大小(即已知轨道半径大小)和方向,但入射点不确定这类问题的特点是:所有轨迹圆的圆心均在将入射点组成的边界沿垂直入射速度方向平移一个半径距离的曲线上。【例5】如图所示,长方形abcd的长ad=0.6m,宽ab=0.3m,O、e分别是ad、bc的中点,以e为圆心eb为半径的圆弧和以O为圆心Od为半径的圆弧组成的区域内有垂直纸面向里的匀强磁场(eb边界上无磁场)磁感应强度B=0.25T。一群不计重力、质量m=3×10-7kg、电荷量q=+2×10-3C的带正电粒子以速度v=5×l02m/s沿垂直ad方向且垂直于磁场射入磁场区域,则下列判断正确的是(D)

A.从Od边射入的粒子,出射点全部分布在Oa边

B.从aO边射入的粒子,出射点全部分布在ab边

C.从Od边射入的粒子,出射点分布在ab边

D.从ad边射人的粒子,出射点全部通过b点【分析】所有进入磁场的粒子的入射点均在dOb线上,将该曲线垂直速度向上平移一个半径后得到曲线Oaf,此即所有粒子在磁场中做圆周运动的圆心所在曲线,在该曲线上从下到上取点作为圆心、为半径作一系列轨迹圆,其中①为从d点射入粒子的轨迹(圆心在O点),②为从O点射入粒子的轨迹(圆心在a点),③为从a点射入粒子的轨迹,从d、O之间入射粒子在磁场中转过1/4圆周后沿eb边界作直线运动最终汇聚于b点,从O、a之间入射粒子先作直线运动再进入磁场做圆周运动,由作图易知这些粒子也汇聚于b点。fff①②f③【练习5】如图所示,在*Oy平面内有一半径为R、与*轴相切于原点的圆形区域,该区域内有垂直于*Oy平面的匀强磁场。在圆的左边0<y<2R的区间内有一束具有相同质量m、电荷量q(q>0)和初速度v的带电微粒沿*轴正方向射向该区域,其中沿半径AO'方向进入磁场区域的带电微粒经磁场偏转后,从坐标原点O沿y轴负方向离开。(1)求磁感应强度B的大小和方向。(2)请指出这束带电微粒与*轴相交的区域,并说明理由。【分析】(1)从A点进入磁场区域的微粒轨迹圆心在A点正下方相距R的C处,微粒轨迹如图所示,可知微粒轨迹半径为;(2)所有这些微粒进入磁场后做圆周运动的圆心均在如图所示半圆虚线O'CD上,在该曲线上由上到下取点作为圆心、以R为半径作一系列轨迹圆,易由图可知这些微粒均与*轴相交于原点——因为圆心所在曲线半圆O'CD的圆心是原点O。CDCDCD【答案】(1),方向垂直*Oy平面向外;(2)这束微粒均与*轴相交于原点。类型六:已知初速度方向(所在直线)和出射点,但入射点不确定这类问题的特点是:所有轨迹圆的圆心均在“以初速度所在直线为准线、出射点为焦点的抛物线”上。【例6】如图所示,现有一质量为m、电量为e的电子从y轴上的P(0,a)点以初速

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论