![用频率估计概率_第1页](http://file4.renrendoc.com/view/84073c37088a61803dc9a7ec8ac52c43/84073c37088a61803dc9a7ec8ac52c431.gif)
![用频率估计概率_第2页](http://file4.renrendoc.com/view/84073c37088a61803dc9a7ec8ac52c43/84073c37088a61803dc9a7ec8ac52c432.gif)
![用频率估计概率_第3页](http://file4.renrendoc.com/view/84073c37088a61803dc9a7ec8ac52c43/84073c37088a61803dc9a7ec8ac52c433.gif)
![用频率估计概率_第4页](http://file4.renrendoc.com/view/84073c37088a61803dc9a7ec8ac52c43/84073c37088a61803dc9a7ec8ac52c434.gif)
![用频率估计概率_第5页](http://file4.renrendoc.com/view/84073c37088a61803dc9a7ec8ac52c43/84073c37088a61803dc9a7ec8ac52c435.gif)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
253用频率估计概率第二十五章概率初步
导入新课讲授新课当堂练习课堂小结学练优九年级数学上(RJ)教学课件学习目标1理解试验次数较大时试验频率趋于稳定这一规律;重点2结合具体情境掌握如何用频率估计概率;重点3通过概率计算进一步比较概率与频率之间的关系.导入新课情境引入问题1抛掷一枚均匀硬币,硬币落地后,会出现哪些可能的结果呢?问题2它们的概率是多少呢?出现“正面朝上”和“反面朝上”两种情况都是问题3在实际掷硬币时,会出现什么情况呢?讲授新课用频率估计概率一掷硬币试验试验探究1抛掷一枚均匀硬币400次,每隔50次记录“正面朝上”的次数,并算出“正面朝上”的频率,完成下表:累计抛掷次数50100150200250300350400“正面朝上”的频数“正面朝上”的频率2346781021231501752000450460520510490500500502根据上表的数据,在下图中画统计图表示“正面朝上”的频率频率试验次数(3)在上图中,用红笔画出表示频率为的直线,你发现了什么?试验次数越多频率越接近05,即频率稳定于概率频率试验次数4下表是历史上一些数学家所做的掷硬币的试验数据,这些数据支持你发现的规律吗?试验者抛掷次数n“正面向上”次数m“正面向上”频率(
)棣莫弗204810610.518布丰404020480.5069费勒1000049790.4979皮尔逊1200060190.5016皮尔逊24000120120.5005支持归纳总结通过大量重复试验,可以用随机事件发生的频率来估计该事件发生的概率数学史实人们在长期的实践中发现,在随机试验中,由于众多微小的偶然因素的影响,每次测得的结果虽不尽相同,但大量重复试验所得结果却能反应客观规律这称为大数法则,亦称大数定律频率稳定性定理思考抛掷硬币试验的特点:;
相等有限问题如果某一随机事件,可能出现的结果是无限个,或每种可能结果发生的可能性不一致,那么我们无法用列举法求其概率,这时我们能够用频率来估计概率吗?从一定高度落下的图钉,着地时会有哪些可能的结果?其中顶帽着地的可能性大吗?做做试验来解决这个问题图钉落地的试验试验探究试验累计次数20406080100120140160180200钉帽着地的次数(频数)91936506168778495109钉帽着地的频率(%)4547.56062.561575552.55354.5试验累计次数220240260280300320340360380400钉帽着地的次数(频数)122135143155162177194203215224钉帽着地的频率(%)5556.25555554555756.456.6561选取20名同学,每位学生依次使图钉从高处落下20次,并根据试验结果填写下表565%2根据上表画出统计图表示“顶帽着地”的频率3这个试验说明了什么问题在图钉落地试验中,“顶帽着地”的频率随着试验次数的增加,稳定在常数565%附近
一般地,在大量重复试验中,随机事件A发生的频率(这里n是实验总次数,它必须相当大,m是在n次试验中随机事件A发生的次数)会稳定到某个常数P.于是,我们用P这个常数表示事件A发生的概率,即
P(A)=P.归纳总结判断正误(1)连续掷一枚质地均匀硬币10次,结果10次全部是正面,则正面向上的概率是1(2)小明掷硬币10000次,则正面向上的频率在05附近(3)设一大批灯泡的次品率为001,那么从中抽取1000只灯泡,一定有10只次品。错误错误正确练一练例1某篮球队教练记录该队一名主力前锋练习罚篮的结果如下:(1)填表(精确到0001);(2)比赛中该前锋队员上篮得分并造成对手犯规,罚篮一次,你能估计这次他能罚中的概率是多少吗?练习罚篮次数306090150200300400500罚中次数274578118161239322401罚中频率09000750086707870805079708050802解:从表中的数据可以发现,随着练习次数的增加,该前锋罚篮命中的频率稳定在08左右,所以估计他这次能罚中的概率约为08例2瓷砖生产受烧制时间、温度、材质的影响,一块砖坯放在炉中烧制,可能成为合格品,也可能成为次品或废品,究竟发生那种结果,在烧制前无法预知,所以这是一种随机现象而烧制的结果是“合格品”是一个随机事件,这个事件的概率称为“合格品率”由于烧制结果不是等可能的,我们常用“合格品”的频率作为“合格品率”的估计某瓷砖厂对最近出炉的一大批某型号瓷砖进行质量抽检,结果如下:抽取瓷砖数n10020030040050060080010002000合格品数m951922873854815777709611924
合格品率1计算上表中合格品率的各频率精确到0001;2估计这种瓷砖的合格品率精确到001;3若该厂本月生产该型号瓷砖500000块,试估计合格品数1逐项计算,填表如下:抽取瓷砖数n10020030040050060080010002000合格品数m951922873854815777709611924
合格品率0.9500.9600.9570.9630.9620.9620.9630.9610.9622观察上表,可以发现,当抽取的瓷砖数n≥400时,合格品率稳定在0962的附近,所以我们可取p=096作为该型号瓷砖的合格品率的估计3500000×96%=480000块,可以估计该型号合格品数为480000块频率与概率的关系联系:频率概率事件发生的频繁程度事件发生的可能性大小在实际问题中,若事件的概率未知,常用频率作为它的估计值区别:频率本身是随机的,在试验前不能确定,做同样次数或不同次数的重复试验得到的事件的频率都可能不同,而概率是一个确定数,是客观存在的,与每次试验无关稳定性大量重复试验当堂练习1一水塘里有鲤鱼、鲫鱼、鲢鱼共1000尾,一渔民通过多次捕获实验后发现:鲤鱼、鲫鱼出现的频率是31%和42%,则这个水塘里有鲤鱼尾,鲢鱼尾3102702抛掷硬币“正面向上”的概率是05如果连续抛掷100次,而结果并不一定是出现“正面向上”和“反面向上”各50次,这是为什么?答:这是因为频数和频率的随机性以及一定的规律性或者说概率是针对大量重复试验而言的,大量重复试验反映的规律并非在每一次试验中都发生3在一个不透明的盒子里装有除颜色不同其余均相同的黑、白两种球,其中白球24个,黑球若干小兵将盒子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复上述过程,下表是试验中的一组统计数据:摸球的次数n10020030050080010003000摸到白球次数m651241783024815991803摸到白球概率0.650.620.5930.6040.6010.5990.6011请估计:当n很大时,摸到白球的频率将会接近(精确到01);2假如你摸一次,估计你摸到白球的概率P(白球)= 0606摸球的次数n10020030050080010003000摸到白球次数m651241783024815991803摸到白球概率0.650.620.5930.6040.6010.5990.601010100970097010301010098009901034填表:由上表可知:柑橘损坏率是,完好率是010090某水果公司以2元/千克的成本新进了10000千克柑橘,如果公司希望这些柑橘能够获得利润5000元,那么在出售柑橘(已去掉损坏的柑橘)时,每千克大约定价为多少元比较合适?分析根据上表估计柑橘损坏的概率为01,则柑橘完好的概率为09解:根据估计的概率可以知道,在10000千克柑橘中完好柑橘的质量为10000×09=9000千克,完好柑橘的实际成本为设每千克柑橘的销价为元,则应有(-222)×9000=5000,解得≈28因此,出售柑橘时每千克大约定价为28元可获利润5000元5某池塘里养了鱼苗10万条,根据这几年的经验知道,鱼苗成活率为95%,一段时间准备打捞出售,第一网捞出40条,称得平均每条鱼重25千克,第二网捞出25条,称得平均每条鱼重22千克,第三网捞出35条,称得平均每条鱼重28千克,试
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 现代教育技术革新与未来教育展望
- 学习进步发言稿
- 社区活动与PBL实践活动的融合探索
- 发言稿400字左右
- 留学后的心理调适与职业发展
- 班级庆元旦活动总结
- 财务岗位职责与整体工作内容
- 公司行政部工作计划范文
- 物业公司办公室工作总结
- 心理健康教育年度工作计划
- 义务教育数学新课标课程标准2022版考试真题附含答案
- 留置胃管课件
- 《纺织服装材料》课件-项目6 纺织材料的水分及检测
- (正式版)SH∕T 3548-2024 石油化工涂料防腐蚀工程施工及验收规范
- AQ/T 2059-2016 磷石膏库安全技术规程(正式版)
- 四川省宜宾市中学2025届九上数学期末统考模拟试题含解析
- 贵州人民版五年级劳动下册教案
- 2024年包头市水务(集团)有限公司招聘笔试冲刺题(带答案解析)
- 知识库管理规范大全
- 华能分布式光伏项目EPC总承包工程投标文件-技
- 蜜雪冰城营销策略研究开题报告
评论
0/150
提交评论