版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
六立体几何【必记结论】1.空间几何体的表面积和体积几何体侧面积表面积体积圆柱S侧=2πrlS表=2πr(r+l)V=S底h=πr2h圆锥S侧=πrlS表=πr(r+l)V=13S底h=13πr圆台S侧=π(r+r′)lS表=π(r2+r′2+rl+r′l)V=13(S上+S下+S上S下)h=13π(r2直棱柱S侧=Ch(C为底面周长)S表=S侧+S上+S下(棱锥的S上=0)V=S底h正棱锥S侧=12Ch′(C为底面周长,h′为斜高V=13S底正棱台S侧=12(C+C′)h′(C,C′分别为上、下底面周长,h′为斜高V=13(S上+S下+S球S=4πR2V=43πR2.球的组合体(1)球与长方体的组合体:长方体的外接球的直径是长方体的体对角线长.(2)球与正方体的组合体:正方体的内切球的直径是正方体的棱长,正方体的棱切球的直径是正方体的面对角线长,正方体的外接球的直径是正方体的体对角线长.(3)球与正四面体的组合体:棱长为a的正四面体的内切球的半径为612a(正四面体高63a的14),外接球的半径为64a(正四面体高633.空间线面位置关系的证明方法(1)线线平行:a⊂βa∥αα∩β=b⇒a∥b,α∥βa∥αβ∩γ=b⇒a∥b,a(2)线面平行:a∥bb⊂αa⊄α⇒a∥α⊥βa⊥βa⊄α(3)面面平行:a⊂α,b⊂αa∩b=Oaα∥βγ∥β⇒α(4)线线垂直:a⊥αb⊂α⇒(5)线面垂直:a⊂α,b⊂αa∩b=Olα∥βa⊥α⇒a⊥β,a∥ba(6)面面垂直:a⊂βa⊥α⇒α⊥β,a∥β4.用空间向量证明平行、垂直设直线l的方向向量为a=(a1,b1,c1),平面α、β的法向量分别为μ=(a2,b2,c2),υ=(a3,b3,c3).则有:(1)线面平行l∥α⇔a⊥μ⇔a·μ=0⇔a1a2+b1b2+c1c2=0.(2)线面垂直l⊥α⇔a∥μ⇔a=kμ⇔a1=ka2,b1=kb2,c1=kc2.(3)面面平行α∥β⇔μ∥υ⇔μ=λυ⇔a2=λa3,b2=λb3,c2=λc3.(4)面面垂直α⊥β⇔μ⊥υ⇔μ·υ=0⇔a2a3+b2b3+c2c3=0.5.用向量求空间角(1)直线l1,l2的夹角θ有cosθ=|cos〈l1,l2〉|(其中l1,l2分别是直线l1,l2的方向向量).(2)直线l与平面α的夹角θ有sinθ=|cos〈l,n〉|(其中l是直线l的方向向量,n是平面α的法向量).(3)平面α,β的夹角θ有cosθ=|cos〈n1,n2〉|,则α-l-β二面角的平面角为θ或π-θ(其中n1,n2分别是平面α,β的法向量).【易错剖析】易错点1不清楚空间点、线、面的位置关系【突破点】解决这类问题的基本思路有两个:一是逐个寻找反例作出否定的判断或逐个进行逻辑证明作出肯定的判断;二是结合长方体模型或实际空间位置(如课桌、教室)作出判断,要注意定理应用准确、考虑问题全面细致.易错点2表面积的计算不准确【突破点】在求表面积时还要注意空间物体是不是中空的,表面积与侧面积要认真区分.易错点3对折叠与展开问题认识不清致误【突破点】注意折叠或展开过程中平面图形与空间图形中的变量与不变量,不仅要注意哪些变了,哪些没变,还要注意位置关系的变化.【易错快攻】易错快攻忽视平面图形翻折前后的显性关系[典例]如图,四边形ABCD为梯形,AD∥BC,BM⊥AD于M,CN⊥AD于N,∠A=45°,AD=4BC=4,AB=2,现沿CN将△CDN折起,使△ADN为正三角形,且平面ADN⊥平面ABCN,过BM的平面与线段DN、DC分别交于E,F.(1)求证:EF⊥DA;(2)在棱DN上(不含端点)是否存在点E,使得直线DB与平面BMEF所成角的正弦值为34,若存在,请确定E听课笔记:六立体几何[典例]解析:(1)证明:∵BM⊥AD,CN⊥AD,∴BM∥CN,在四棱锥D-ABCN中,CN⊂平面CDN,BM⊄平面CDN,∴BM∥平面CDN,又平面BMEF∩平面CDN=EF,∴BM∥EF,∵平面ADN⊥平面ABCN且交于AN,BM⊥AN,∴BM⊥平面ADN,即EF⊥平面ADN,又DA⊂平面ADN,∴EF⊥DA;(2)存在,E为棱DN上靠近N点的四等分点.∵DA=DN,AM=MN=1,连接DM,∴DM⊥AN,又平面ADN⊥平面ABCN,且平面ADN∩平面ABCN=AN,∴DM⊥平面ABCN.如图,以M为坐标原点,分别以MA,MB,MD所在直线为x,y,z轴建立空间直角坐标系,则D(0,0,3),B(0,1,0),M(0,0,0),N(-1,0,0),DB=(0,1,-3),BM=(0,-1,0),ND=(1,0,3),设NE=λND,(0<λ<1),则E(λ-1,0,3λ),ME=(λ-1,0,3λ),设平面BMEF的一个法向量为n=(x,y,z),则n不妨令x=3λ,则z=1-λ,n=(3λ,0,1-λ),设直
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 学生共青团活动介绍
- 太阳能发电效益测算
- 总结者挑剔者控场者记录者无领导小组讨论测评常见的角
- 100以内加减法竖式计算单元作业试题大全附答案
- 需要性重要性创造性可行性合适性
- 《生理学感觉系统》课件
- 《入井安全须知》课件
- 一提供安全感
- f放射治疗总体概况
- 公司培训介绍
- 2024 ESC慢性冠脉综合征指南解读(全)
- 2024二十届三中全会知识竞赛题库及答案
- (高清版)JTG 5142-2019 公路沥青路面养护技术规范
- 物流运输项目 投标方案(适用烟草、煤炭、化肥、橡胶等运输项目)(技术方案)
- 电力企业合规培训课件
- 领导干部任前谈话记录表
- GB/T 10058-2009电梯技术条件
- 施工现场质量管理检查记录表【精选文档】
- 新版pep小学英语四上单词默写
- 期中考试班会PPT
- 送货单EXCEL模板
评论
0/150
提交评论