版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1.2独立性检验的根本思想及其初步应用高二数学选修1-2
第一章统计案例1、相关系数r复习回忆3、残差平方和2、残差复习回忆4、总偏差平方和5、相关指数R2〔回归平方和〕独立性检验本节研究的是两个分类变量的独立性检验问题。在日常生活中,我们常常关心分类变量之间是否有关系:例如,吸烟是否与患肺癌有关系?性别是否对于喜欢数学课程有影响?等等。
吸烟与肺癌列联表不患肺癌患肺癌总计不吸烟7775427817吸烟2099492148总计9874919965为了调查吸烟是否对肺癌有影响,某肿瘤研究所随机地调查了9965人,得到如下结果〔单位:人〕列联表在不吸烟者中患肺癌的比重是
在吸烟者中患肺癌的比重是
说明:吸烟者和不吸烟者患肺癌的可能性存在差异,吸烟者患肺癌的可能性大。0.54%2.28%探究不患肺癌患肺癌总计不吸烟7775427817吸烟2099492148总计98749199651、列联表2、三维柱形图3、二维条形图不患肺癌患肺癌吸烟不吸烟不患肺癌患肺癌吸烟不吸烟080007000600050004000300020001000从三维柱形图能清晰看出各个频数的相对大小。从二维条形图能看出,吸烟者中患肺癌的比例高于不患肺癌的比例。通过图形直观判断两个分类变量是否相关:不吸烟吸烟患肺癌比例不患肺癌比例4、等高条形图等高条形图更清晰地表达了两种情况下患肺癌的比例。
上面我们通过分析数据和图形,得到的直观印象是吸烟和患肺癌有关,那么事实是否真的如此呢?这需要用统计观点来考察这个问题。现在想要知道能够以多大的把握认为“吸烟与患肺癌有关〞,为此先假设
H0:吸烟与患肺癌没有关系.不患肺癌患肺癌总计不吸烟aba+b吸烟cdc+d总计a+cb+da+b+c+d把表中的数字用字母代替,得到如下用字母表示的列联表用A表示不吸烟,B表示不患肺癌,那么“吸烟与患肺癌没有关系〞等价于“吸烟与患肺癌独立〞,即假设H0等价于P(AB)=P(A)P(B).因此|ad-bc|越小,说明吸烟与患肺癌之间关系越弱;
|ad-bc|越大,说明吸烟与患肺癌之间关系越强。不患肺癌患肺癌总计不吸烟aba+b吸烟cdc+d总计a+cb+da+b+c+d如果“吸烟与患肺癌没有关系〞,那么在吸烟者中不患肺癌的比例应该与不吸烟者中相应的比例差不多,即
为了使不同样本容量的数据有统一的评判标准,基于上述分析,我们构造一个随机变量-----卡方统计量(1)假设H0成立,即“吸烟与患肺癌没有关系〞,那么K2应很小。根据表3-7中的数据,利用公式〔1〕计算得到K2的观测值为:那么这个值到底能告诉我们什么呢?(2)
独立性检验在H0成立的情况下,统计学家估算出如下的概率
即在H0成立的情况下,K2的值大于6.635的概率非常小,近似于0.01。也就是说,在H0成立的情况下,对随机变量K2进行屡次观测,观测值超过6.635的频率约为0.01。思考
答:判断出错的概率为0.01。判断是否成立的规则如果,就判断不成立,即认为吸烟与患肺癌有关系;否则,就判断成立,即认为吸烟与患肺癌有关系。独立性检验的定义上面这种利用随机变量K2来确定在多大程度上可以认为“两个分类变量有关系〞的方法,称为两个分类变量的独立性检验。在该规则下,把结论“成立”错判成“不成立”的概率不会差过即有99%的把握认为不成立。独立性检验的根本思想〔类似反证法〕(1)假设结论不成立,即“两个分类变量没有关系”.(2)在此假设下我们所构造的随机变量K2
应该很小,如果由观测数据计算得到K2的观测值k很大,则在一定可信程度上说明不成立.即在一定可信程度上认为“两个分类变量有关系”;如果k的值很小,则说明由样本观测数据没有发现反对的充分证据。(3)根据随机变量K2的含义,可以通过评价该假设不合理的程度,由实际计算出的,说明假设合理的程度为99%,即“两个分类变量有关系〞这一结论成立的可信度为约为99%.怎样判断K2的观测值k是大还是小呢?
这仅需要确定一个正数,当时就认为K2的观测值k大。此时相应于的判断规则为:如果,就认为“两个分类变量之间有关系”;否则就认为“两个分类变量之间没有关系”。----临界值按照上述规则,把“两个分类变量之间有没关系”错误的判断为“两个分类变量之间有关系”的概率为P().在实际应用中,我们把解释为有的把握认为“两个分类变量之间有关系”;把解释为不能以的把握认为“两个分类变量之间有关系”,或者样本观测数据没有提供“两个分类变量之间有关系”的充分证据。思考:
利用上面的结论,你能从列联表的三维柱形图中看出两个分类变量是否相关呢?表1-112x2联表一般地,假设有两个分类变量X和Y,它们的值域分别为{x1,x2}和{y1,y2},其样本频数列联表〔称为2x2列联表〕为:y1y2总计x1aba+bx2cdc+d总计a+cb+da+b+c+d假设要判断的结论为:H1:“X与Y有关系〞,可以按如下步骤判断H1成立的可能性:2、可以利用独立性检验来考察两个分类变量是否有关系,并且能较精确地给出这种判断的可靠程度。1、通过三维柱形图和二维条形图,可以粗略地判断两个变量是否有关系,但是这种判断无法精确地给出所得结论的可靠程度。(1)在三维柱形图中,主对角线上两个柱形高度的乘积ad与副对角线上两个柱形高度的乘积bc相差越大,H1成立的可能性就越大。(2)在二维条形图中,可以估计满足条件X=x1的个体中具有Y=y1的个体所占的比例,也可以估计满足条件X=x2的个体中具有Y=y1的个体所占的比例。两个比例相差越大,H1成立的可能性就越大。在实际应用中,要在获取样本数据之前通过下表确定临界值:0.500.400.250.150.100.4550.7081.3232.0722.7060.050.0250.0100.0050.0013.8415.0246.6367.87910.828具体作法是:(1)根据实际问题需要的可信程度确定临界值;(2)利用公式(1),由观测数据计算得到随机变量的观测值;(3)如果,就以的把握认为“X与Y有关系”;否则就说样本观测数据没有提供“X与Y有关系”的充分证据。例1在某医院,因为患心脏病而住院的665名男性病人中,有214人秃顶;而另外772名不是因为患心脏病而住院的男性病人中有175人秃顶。分别利用图形和独立性检验方法判断秃顶与患心脏病是否有关系?你所得的结论在什么范围内有效?解:根据题目所给数据得到如以下联表:患心脏病不患心脏病总计秃顶214175389不秃顶4515971048总计6657721437相应的三维柱形图如下图,比较来说,底面副对角线上两个柱体高度的乘积要大一些,因此可以在某种程度上认为“秃顶与患心脏病有关〞。秃头不秃头例1在某医院,因为患心脏病而住院的665名男性病人中,有214人秃顶;而另外772名不是因为患心脏病而住院的男性病人中有175人秃顶。分别利用图形和独立性检验方法判断秃顶与患心脏病是否有关系?你所得的结论在什么范围内有效?解:根据题目所给数据得到如以下联表:患心脏病不患心脏病总计秃顶214175389不秃顶4515971048总计6657721437
根据联表1-13中的数据,得到所以有99%的把握认为“秃顶患心脏病有关〞。例1.秃头与患心脏病在解决实际问题时,可以直接计算K2的观测值k进行独立检验,而不必写出K2的推导过程。本例中的边框中的注解,主要是使得学生们注意统计结果的适用范围〔这由样本的代表性所决定〕。因为这组数据来自住院的病人,因此所得到的结论适合住院的病人群体.例2为考察高中生的性别与是否喜欢数学课程之间的关系,在某城市的某校高中生中随机抽取300名学生,得到如下联表:喜欢数学课程不喜欢数学课程总计男3785122女35143178总计72228300由表中数据计算K2的观测值k4.514。能够以95%的把握认为高中生的性别与是否喜欢数学课程之间有关系吗?请详细阐述得出结论的依据。解:可以有95%以上的把握认为“性别与喜欢数学课程之间有关系〞。分别用a,b,c,d表示样本中喜欢数学课的男生人数、不喜欢数学课的男生人数、喜欢数学课的女生人数、不喜欢数学课的女生人数。如果性别与是否喜欢数学课有关系,那么男生中喜欢数学课的比例与女生中喜欢数学课的比例应该相差很多,即例2为考察高中生的性别与是否喜欢数学课程之间的关系,在某城市的某校高中生中随机抽取300名学生,得到如下联表:喜欢数学课程不喜欢数学课程总计男3785122女35143178总计72228300由表中数据计算K2的观测值k4.514。能够以95%的把握认为高中生的性别与是否喜欢数学课程之间有关系吗?请详细阐述得出结论的依据。因此,越大,“性别与喜欢数学课程之间有关系”成立的可能性就越大。另一方面,在假设“性别与喜欢数学课程之间有关系”的前提下,事件的概率为因此事件A是一个小概率事件。而由样本数据计算得的观测值k=4.514,即小概率事件A发生。因此应该断定“性别与喜欢数学课程之间有关系”成立,并且这种判断结果出错的可能性约为5%。所以,约有95%的把握认为“性别与喜欢数学课程之间有关系”。例3、某校高三年级在一次全年级的大型考试中,数学成绩优秀和非优秀的学生中,物理、化学、总分也为优秀的人数如下表所示,那么数学成绩优秀与物理、化学、总分也优秀哪个关系较大?物理化学总分数学优秀228225267数学非优秀14315699注:该年级此次考试中,数学成绩优秀的有360人,非优秀的有880人。物理优秀物理非优秀合计数学优秀数学非优秀合计〔1〕列出数学与物理优秀的2x2列联表如下2281323601437378803718691240代入公式可得注:该年级此次考试中,数学成绩优秀的有360人,非优秀的有880人。物理化学总分数学优秀228225267数学非优秀14315699〔2〕列出数学与化学优秀的2x2列联表如下化学优秀化学非优秀合计数学优秀数学非优秀合计2251353601567248803818591240〔3〕列出数学与总分优秀的2x2列联表如下总分优秀总分非优秀合计数学优秀数学非优秀合计26793360997818803668741240代入公式可得代入公式可得练习1:在500人身上试验某种血清预防感冒作用,把他们一年中的感冒记录与另外500名未用血清的人的感冒记录作比较,结果如表所示。未感冒感冒合计使用血清252248500未使用血清224276500合计4765241000试画出列联表的条形图,并通过图形判断这种血清能否起到预防感冒的作用?并进行独立性检验。解:设H0:感冒与是否使用该血清没有关系。因当H0成立时,K2≥6.635的概率约为0.01,故有99%的把握认为该血清能起到预防感冒的作用。P(k≥k0)0.500.400.250.150.100.050.0250.0100.0050.001k00.4550.7081.3232.0722.7063.8415.0246.6357.87910.828P(k≥k0)0.500.400.250.150.100.050.0250.0100.0050.001k00.4550.7081.3232.0722.7063.8415.0246.6357.87910.828有效无效合计口服584098注射643195合计12271193解:设
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年宁夏农垦金融控股有限公司招聘笔试参考题库含答案解析
- 2025-2030全球工业系统智能化解决方案行业调研及趋势分析报告
- 2024年科普知识竞赛试题库及答案(共80题)
- 科技环境下学生道德观的培养
- 科技医疗的里程碑尿液与血液的联合诊断技术
- 二零二五年度煤炭资源勘探与开发合作合同3篇
- 二零二五年度车贷借款合同车辆交易税费承担协议3篇
- 甘肃2025年甘肃省中医院招聘高层次人才29人笔试历年参考题库附带答案详解
- 2025年度个人环保设备贷款还款合同4篇
- 漯河2024年河南漯河医学高等专科学校第三附属医院(漯河市康复医院)招聘4人笔试历年参考题库附带答案详解
- GB/T 45120-2024道路车辆48 V供电电压电气要求及试验
- 2025年中核财务有限责任公司招聘笔试参考题库含答案解析
- 春节文化常识单选题100道及答案
- 华中师大一附中2024-2025学年度上学期高三年级第二次考试数学试题(含解析)
- 12123交管学法减分考试题及答案
- 2025年寒假实践特色作业设计模板
- 《数据采集技术》课件-XPath 解析库
- 财务报销流程培训课程
- 成人脑室外引流护理-中华护理学会团体 标准
- 24年追觅在线测评28题及答案
- 春节慰问困难职工方案春节慰问困难职工活动
评论
0/150
提交评论